Discretization of a sine-Gordon type equation

被引:0
|
作者
Ohta, Y. [1 ]
机构
[1] Hiroshima Univ, Grad Sch Engn, Higashihiroshima 7398527, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An integrable modification of the double sine-Gordon equation is discretized by using Hirota's bilinear theory. The soliton solution is given in terms of the discrete Gram type determinant and the bilinear equations are reduced to the Jacobi formula for determinant.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 50 条
  • [21] ON RECURRENT SOLUTIONS TO THE SINE-GORDON EQUATION
    MURAKAMI, Y
    TAJIRI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (06) : 2207 - 2208
  • [22] Generalized solution of Sine-Gordon equation
    Chadli, Lalla Saadia
    Melliani, Said
    Moujahid, Abdelaziz
    Elomari, M'hamed
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2015, 7 (01): : 87 - 92
  • [23] On a New Avatar of the Sine-Gordon Equation
    Sakovich, S. Yu
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2018, 21 (01): : 62 - 68
  • [24] Weingarten surfaces and sine-Gordon equation
    陈维桓
    李海中
    ScienceinChina,SerA., 1997, Ser.A.1997 (10) : 1028 - 1035
  • [25] Localization of the sine-Gordon equation solutions
    Porubov, A. V.
    Fradkov, A. L.
    Bondarenkov, R. S.
    Andrievsky, B. R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 29 - 37
  • [26] Integrable discretizations of the sine-Gordon equation
    Boiti, M
    Pempinelli, F
    Prinari, B
    Spire, A
    INVERSE PROBLEMS, 2002, 18 (05) : 1309 - 1324
  • [27] CANONICAL TRANSFORMATION FOR SINE-GORDON EQUATION
    KODAMA, Y
    WADATI, M
    PROGRESS OF THEORETICAL PHYSICS, 1976, 56 (01): : 342 - 343
  • [28] COMMENTS ON THE PERTURBED SINE-GORDON EQUATION
    PAPASTAMATIOU, NJ
    MATSUMOTO, H
    UMEZAWA, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (09) : 2205 - 2207
  • [29] On robust stability of sine-Gordon equation
    Efimov, Denis
    Fridman, Emilia
    Richard, Jean-Pierre
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7001 - 7006
  • [30] On the numerical solution of the Sine-Gordon equation
    Program in Applied Mathematics, University of Colorado, Boulder, CO 80309, United States
    不详
    不详
    J. Comput. Phys., 2 (354-367):