Discretization of a sine-Gordon type equation

被引:0
|
作者
Ohta, Y. [1 ]
机构
[1] Hiroshima Univ, Grad Sch Engn, Higashihiroshima 7398527, Japan
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An integrable modification of the double sine-Gordon equation is discretized by using Hirota's bilinear theory. The soliton solution is given in terms of the discrete Gram type determinant and the bilinear equations are reduced to the Jacobi formula for determinant.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 50 条
  • [11] The dissipative sine-Gordon equation
    Adomian, G
    FOUNDATIONS OF PHYSICS LETTERS, 1996, 9 (04) : 407 - 410
  • [12] PERTURBED SINE-GORDON EQUATION
    ZNOJIL, M
    ACTA PHYSICA POLONICA B, 1979, 10 (11): : 951 - 958
  • [13] MATRIX SINE-GORDON EQUATION
    ANDREEV, VA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1990, 84 (03) : 920 - 929
  • [14] Perturbation theory for sine-Gordon equation
    Tang, Y
    Yan, JR
    Zhang, KW
    Chen, ZH
    ACTA PHYSICA SINICA, 1999, 48 (03) : 480 - 484
  • [15] The sine-Gordon equation in the finite line
    Ramos, JI
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 124 (01) : 45 - 93
  • [16] On the linearization of the super sine-Gordon equation
    Siddiq, M
    Hassan, M
    EUROPHYSICS LETTERS, 2005, 70 (02): : 149 - 154
  • [17] The exploding solitons of the sine-Gordon equation
    Liu, Shuzhi
    Qiu, Deqin
    APPLIED MATHEMATICS LETTERS, 2025, 160
  • [18] HAMILTONIAN STRUCTURE OF SINE-GORDON EQUATION
    BENZA, V
    MONTALDI, E
    PHYSICS LETTERS A, 1976, 56 (05) : 347 - 349
  • [19] Identifiability for Linearized Sine-Gordon Equation
    Ha, J.
    Gutman, S.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (01) : 106 - 121
  • [20] Weingarten surfaces and sine-Gordon equation
    Chen, WH
    Li, HZ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10): : 1028 - 1035