Discontinuous Finite Volume Element Methods for the Optimal Control of Brinkman Equations

被引:3
|
作者
Kumar, Sarvesh [1 ]
Ruiz-Baier, Ricardo [2 ]
Sandilya, Ruchi [1 ]
机构
[1] Indian Inst Space Sci & Technol, Dept Math, Thiruvananthapuram 695547, Kerala, India
[2] Univ Oxford, Math Inst, A Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
Brinkman equations; Optimal control problems; Discontinuous finite volume element discretisation; STOKES EQUATIONS; DISCRETIZATION; FLOW;
D O I
10.1007/978-3-319-57394-6_33
中图分类号
O414.1 [热力学];
学科分类号
摘要
We introduce and analyse a family of hybrid discretisations based on lowest order discontinuous finite volume elements for the approximation of optimal control problems constrained by the Brinkman equations. The classical optimise-then-discretise approach is employed to handle the control problem leading to a non-symmetric discrete formulation. An a priori error estimate is derived for the control variable in the L-2 - norm, and we exemplify the properties of the method with a numerical test in 3D.
引用
收藏
页码:307 / 315
页数:9
相关论文
共 50 条