Discontinuous Finite Volume Element Methods for the Optimal Control of Brinkman Equations

被引:3
|
作者
Kumar, Sarvesh [1 ]
Ruiz-Baier, Ricardo [2 ]
Sandilya, Ruchi [1 ]
机构
[1] Indian Inst Space Sci & Technol, Dept Math, Thiruvananthapuram 695547, Kerala, India
[2] Univ Oxford, Math Inst, A Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
Brinkman equations; Optimal control problems; Discontinuous finite volume element discretisation; STOKES EQUATIONS; DISCRETIZATION; FLOW;
D O I
10.1007/978-3-319-57394-6_33
中图分类号
O414.1 [热力学];
学科分类号
摘要
We introduce and analyse a family of hybrid discretisations based on lowest order discontinuous finite volume elements for the approximation of optimal control problems constrained by the Brinkman equations. The classical optimise-then-discretise approach is employed to handle the control problem leading to a non-symmetric discrete formulation. An a priori error estimate is derived for the control variable in the L-2 - norm, and we exemplify the properties of the method with a numerical test in 3D.
引用
收藏
页码:307 / 315
页数:9
相关论文
共 50 条
  • [21] Robust finite element methods and solvers for the Biot-Brinkman equations in vorticity form
    Caraballo, Ruben
    In, Chansophea Wathanak
    Martin, Alberto F.
    Ruiz-Baier, Ricardo
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (03)
  • [22] Discontinuous Galerkin finite element methods for the gyrokinetic-waterbag equations
    Besse, Nicolas
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (02) : 985 - 1040
  • [23] Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations
    Hartmann, R
    Houston, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 183 (02) : 508 - 532
  • [24] Optimal test functions for boundary accuracy in discontinuous finite element methods
    Kast, Steven M.
    Dahm, Johann P. S.
    Fidkowski, Krzysztof J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 298 : 360 - 386
  • [25] Adaptive finite element methods for optimal control of partial differential equations: Basic concept
    Becker, R
    Kapp, H
    Rannacher, R
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) : 113 - 132
  • [26] UNSTRUCTURED SPACE-TIME FINITE ELEMENT METHODS FOR OPTIMAL CONTROL OF PARABOLIC EQUATIONS
    Langer, Ulrich
    Steinbach, Olaf
    Troltzsch, Fredi
    Yang, Huidong
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A744 - A771
  • [27] Finite element methods for optimal control problems governed by integral equations and integro-differential equations
    Brunner, H
    Yan, NN
    NUMERISCHE MATHEMATIK, 2005, 101 (01) : 1 - 27
  • [28] Finite element methods for optimal control problems governed by integral equations and integro-differential equations
    Hermann Brunner
    Ningning Yan
    Numerische Mathematik, 2005, 101 : 1 - 27
  • [29] Finite volume element methods for nonequilibrium radiation diffusion equations
    Zhao, Xiukun
    Chen, Yanli
    Gao, Yanni
    Yu, Changhua
    Li, Yonghai
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 73 (12) : 1059 - 1080
  • [30] Two robust virtual element methods for the Brinkman equations
    Wang, Gang
    Wang, Ying
    He, Yinnian
    CALCOLO, 2021, 58 (04)