Discontinuous Finite Volume Element Methods for the Optimal Control of Brinkman Equations

被引:3
|
作者
Kumar, Sarvesh [1 ]
Ruiz-Baier, Ricardo [2 ]
Sandilya, Ruchi [1 ]
机构
[1] Indian Inst Space Sci & Technol, Dept Math, Thiruvananthapuram 695547, Kerala, India
[2] Univ Oxford, Math Inst, A Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
Brinkman equations; Optimal control problems; Discontinuous finite volume element discretisation; STOKES EQUATIONS; DISCRETIZATION; FLOW;
D O I
10.1007/978-3-319-57394-6_33
中图分类号
O414.1 [热力学];
学科分类号
摘要
We introduce and analyse a family of hybrid discretisations based on lowest order discontinuous finite volume elements for the approximation of optimal control problems constrained by the Brinkman equations. The classical optimise-then-discretise approach is employed to handle the control problem leading to a non-symmetric discrete formulation. An a priori error estimate is derived for the control variable in the L-2 - norm, and we exemplify the properties of the method with a numerical test in 3D.
引用
收藏
页码:307 / 315
页数:9
相关论文
共 50 条
  • [1] Error Bounds for Discontinuous Finite Volume Discretisations of Brinkman Optimal Control Problems
    Kumar, S.
    Ruiz-Baier, R.
    Sandilya, R.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 64 - 93
  • [2] Error Bounds for Discontinuous Finite Volume Discretisations of Brinkman Optimal Control Problems
    S. Kumar
    R. Ruiz-Baier
    R. Sandilya
    Journal of Scientific Computing, 2019, 78 : 64 - 93
  • [3] A conforming discontinuous Galerkin finite element method for Brinkman equations
    Dang, Haoning
    Zhai, Qilong
    Zhao, Zhongshu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [4] Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman's Equations
    Iliev, Oleg P.
    Lazarov, Raytcho D.
    Willems, Joerg
    LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 14 - +
  • [5] HYBRIDIZED WEAK GALERKIN FINITE ELEMENT METHODS FOR BRINKMAN EQUATIONS
    Jia, Jiwei
    Lee, Young-Ju
    Feng, Yue
    Wang, Zichan
    Zhao, Zhongshu
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (03): : 2489 - 2516
  • [6] Convergence Analysis of Discontinuous Finite Volume Methods for Elliptic Optimal Control Problems
    Sandilya, Ruchi
    Kumar, Sarvesh
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2016, 13 (02)
  • [7] Adaptive HDG Methods for the Brinkman Equations with Application to Optimal Control
    Haitao Leng
    Huangxin Chen
    Journal of Scientific Computing, 2021, 87
  • [8] Adaptive HDG Methods for the Brinkman Equations with Application to Optimal Control
    Leng, Haitao
    Chen, Huangxin
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [9] A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 273 : 327 - 342
  • [10] Mixed and discontinuous finite volume element schemes for the optimal control of immiscible flow in porous media
    Kumar, Sarvesh
    Ruiz-Baier, Ricardo
    Sandilya, Ruchi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (04) : 923 - 937