Local and global colorability of graphs

被引:0
|
作者
Alon, Noga [1 ,2 ,3 ]
Ben-Eliezer, Omri [2 ]
机构
[1] Tel Aviv Univ, Sackler Sch Math, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Blavatn Sch Comp Sci, IL-69978 Tel Aviv, Israel
[3] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
Local colorability; Local chromatic number; 2-degeneracy; RAMSEY NUMBERS;
D O I
10.1016/j.disc.2015.09.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for any fixed c >= 3 and r, the maximum possible chromatic number of a graph on n vertices in which every subgraph of radius at most r is c-colorable is (Theta) over tilde (n 1/r+1): it is O ((n/ log n) 1/r+1) and Omega(n 1/r+1 log n). The proof is based on a careful analysis of the local and global colorability of random graphs and implies, in particular, that a random n-vertex graph with the right edge probability has typically a chromatic number as above and yet most balls of radius r in it are 2-degenerate. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:428 / 442
页数:15
相关论文
共 50 条
  • [41] 3-colorability of 4-regular Hamiltonian graphs
    Fleischner, H
    Sabidussi, G
    JOURNAL OF GRAPH THEORY, 2003, 42 (02) : 125 - 140
  • [42] Improper colorability of planar graphs without prescribed short cycles
    Wang, Yingqian
    Xu, Jinghan
    DISCRETE MATHEMATICS, 2014, 322 : 5 - 14
  • [43] Colorability of Unitary Endo-Cayley Graphs of Cyclic Groups
    Promsakon, Chanon
    THAI JOURNAL OF MATHEMATICS, 2018, 16 (02): : 529 - 539
  • [44] The 3-colorability problem on graphs with maximum degree four
    Kochol, M
    Lozin, V
    Randerath, B
    SIAM JOURNAL ON COMPUTING, 2003, 32 (05) : 1128 - 1139
  • [45] Algorithms and Almost Tight Results for -Colorability of Small Diameter Graphs
    Mertzios, George B.
    Spirakis, Paul G.
    ALGORITHMICA, 2016, 74 (01) : 385 - 414
  • [46] Spectral Planting and the Hardness of Refuting Cuts, Colorability, and Communities in Random Graphs
    Bandeira, Afonso S.
    Banks, Jess
    Kunisky, Dmitriy
    Moore, Cristopher
    Wein, Alexander S.
    Proceedings of Machine Learning Research, 2021, 134 : 410 - 473
  • [47] Object recognition using Local-Global graphs
    Bourbakis, N
    Yuan, P
    Makrogiannis, S
    15TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2003, : 616 - 627
  • [48] Microstate analysis of the EEG using Local Global graphs
    Michalopoulos, Kostas
    Bourbakis, Nikolaos
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2013,
  • [49] Sparse graphs using global and local smoothness constraints
    Dornaika, Fadi
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (06) : 1241 - 1251
  • [50] The Effect of Local Majority on Global Majorityin Connected Graphs
    Yair Caro
    Raphael Yuster
    Graphs and Combinatorics, 2018, 34 : 1469 - 1487