Local and global colorability of graphs

被引:0
|
作者
Alon, Noga [1 ,2 ,3 ]
Ben-Eliezer, Omri [2 ]
机构
[1] Tel Aviv Univ, Sackler Sch Math, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Blavatn Sch Comp Sci, IL-69978 Tel Aviv, Israel
[3] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
Local colorability; Local chromatic number; 2-degeneracy; RAMSEY NUMBERS;
D O I
10.1016/j.disc.2015.09.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for any fixed c >= 3 and r, the maximum possible chromatic number of a graph on n vertices in which every subgraph of radius at most r is c-colorable is (Theta) over tilde (n 1/r+1): it is O ((n/ log n) 1/r+1) and Omega(n 1/r+1 log n). The proof is based on a careful analysis of the local and global colorability of random graphs and implies, in particular, that a random n-vertex graph with the right edge probability has typically a chromatic number as above and yet most balls of radius r in it are 2-degenerate. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:428 / 442
页数:15
相关论文
共 50 条
  • [31] Local versus Global Search in Channel Graphs
    Hunter, A. H.
    Pippenger, Nicholas
    NETWORKS, 2013, 62 (01) : 27 - 34
  • [32] Local and Global Expansion in Random Geometric Graphs
    Liu, Siqi
    Mohanty, Sidhanth
    Schramm, Tselil
    Yang, Elizabeth
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 817 - 825
  • [33] Algebraic Connectivity: Local and Global Maximizer Graphs
    Shahbaz, Karim
    Belur, Madhu N.
    Ganesh, Ajay
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (03): : 1636 - 1647
  • [34] LOCAL AND GLOBAL AVERAGE DEGREE IN GRAPHS AND MULTIGRAPHS
    BERTRAM, E
    ERDOS, P
    HORAK, P
    SIRAN, J
    TUZA, Z
    JOURNAL OF GRAPH THEORY, 1994, 18 (07) : 647 - 661
  • [35] Global and local uncertainty principles for signals on graphs
    Perraudin, Nathanael
    Ricaud, Benjamin
    Shuman, David I.
    Vandergheynst, Pierre
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2018, 7
  • [36] 3-colorability εΡ for P6-free graphs
    Randerath, B
    Schiermeyer, I
    DISCRETE APPLIED MATHEMATICS, 2004, 136 (2-3) : 299 - 313
  • [37] A note on complex-4-colorability of signed planar graphs
    Kemnitz, Arnfried
    Voigt, Margit
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [38] DP-4-colorability of two classes of planar graphs
    Chen, Lily
    Liu, Runrun
    Yu, Gexin
    Zhao, Ren
    Zhou, Xiangqian
    DISCRETE MATHEMATICS, 2019, 342 (11) : 2984 - 2993
  • [39] A note on k-colorability of P-free graphs
    Hoang, Chinh T.
    Kaminski, Marcin
    Lozin, Vadim
    Sawada, Joe
    Shu, Xiao
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2008, PROCEEDINGS, 2008, 5162 : 387 - +
  • [40] EDGE-3-COLORABILITY OF CERTAIN GRAPHS .2.
    HURSCH, JL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A537 - A537