Local and global colorability of graphs

被引:0
|
作者
Alon, Noga [1 ,2 ,3 ]
Ben-Eliezer, Omri [2 ]
机构
[1] Tel Aviv Univ, Sackler Sch Math, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Blavatn Sch Comp Sci, IL-69978 Tel Aviv, Israel
[3] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
关键词
Local colorability; Local chromatic number; 2-degeneracy; RAMSEY NUMBERS;
D O I
10.1016/j.disc.2015.09.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for any fixed c >= 3 and r, the maximum possible chromatic number of a graph on n vertices in which every subgraph of radius at most r is c-colorable is (Theta) over tilde (n 1/r+1): it is O ((n/ log n) 1/r+1) and Omega(n 1/r+1 log n). The proof is based on a careful analysis of the local and global colorability of random graphs and implies, in particular, that a random n-vertex graph with the right edge probability has typically a chromatic number as above and yet most balls of radius r in it are 2-degenerate. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:428 / 442
页数:15
相关论文
共 50 条
  • [1] Group colorability of graphs
    Lai, HJ
    Zhang, XK
    ARS COMBINATORIA, 2002, 62 : 299 - 317
  • [2] GROWTH NUMBER AND COLORABILITY OF GRAPHS
    HURSCH, JL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A477 - A477
  • [3] Complexity of conditional colorability of graphs
    Li, Xueliang
    Yao, Xiangmei
    Zhou, Wenli
    Broersma, Hajo
    APPLIED MATHEMATICS LETTERS, 2009, 22 (03) : 320 - 324
  • [4] On planarity and colorability of circulant graphs
    Heuberger, C
    DISCRETE MATHEMATICS, 2003, 268 (1-3) : 153 - 169
  • [5] Thickness and Colorability of Geometric Graphs
    Durocher, Stephane
    Gethner, Ellen
    Mondal, Debajyoti
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2013, 2013, 8165 : 237 - 248
  • [6] Testing graphs for colorability properties
    Fischer, E
    PROCEEDINGS OF THE TWELFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2001, : 873 - 882
  • [7] Thickness and colorability of geometric graphs
    Durocher, Stephane
    Gethner, Ellen
    Mondal, Debajyoti
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2016, 56 : 1 - 18
  • [8] A COLORABILITY CRITERION FOR FINITE GRAPHS
    BERGMANN, H
    GYNAECOLOGIA, 1968, 166 (01): : 193 - &
  • [9] Complexity of conditional colorability of graphs
    Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, 300071, China
    不详
    Appl Math Lett, 2009, 3 (320-324):
  • [10] Testing graphs for colorability properties
    Fischer, E
    RANDOM STRUCTURES & ALGORITHMS, 2005, 26 (03) : 289 - 309