High-Performance Sodium-Ion Batteries and Sodium-Ion Pseudocapacitors Based on MoS2/Graphene Composites

被引:190
|
作者
Wang, Yun-Xiao [1 ]
Chou, Shu-Lei [1 ]
Wexler, David [2 ]
Liu, Hua-Kun [1 ]
Dou, Shi-Xue [1 ]
机构
[1] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2519, Australia
[2] Univ Wollongong, Ctr Electron Microscopy, Wollongong, NSW 2519, Australia
基金
澳大利亚研究理事会;
关键词
energy storage; expanded MoS2; hydrothermal methods; graphene composites; pseudocapacitors; sodium-ion batteries; REDUCED GRAPHENE OXIDE; HIGH-CAPACITY; STORAGE MECHANISM; ANODE MATERIALS; HARD-CARBON; LOW-COST; LITHIUM; CATHODE; INSERTION; MOS2;
D O I
10.1002/chem.201402563
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion energy storage, including sodium-ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium-ion energy storage. It is an intriguing prospect, especially for large-scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d-spacing, a contribution of the graphene matrix, and the unique properties of the MoS2/G substantially optimize Na storage behavior, by accommodating large volume changes and facilitating fast ion diffusion. MoS2/G exhibits a stable capacity of approximately 350 mAh g(-1) over 200 cycles at 0.25 C in half cells, and delivers a capacitance of 50 F g(-1) over 2000 cycles at 1.5 C in pseudocapacitors with a wide voltage window of 0.1-2.5 V.
引用
收藏
页码:9607 / 9612
页数:6
相关论文
共 50 条
  • [31] Topotactic Syntopogenous Sodium Vanadium Fluoride for High-Performance Sodium-Ion Batteries: Electron and Sodium-Ion Reservoirs in Perovskite/Diperovskite Superlattice
    Guo, Ying
    Li, Kai
    Gong, Yun
    Lin, Jianhua
    NANO LETTERS, 2024, 24 (28) : 8481 - 8486
  • [32] Compositing reduced graphene oxide with interlayer spacing enlarged MoS2 for performance enhanced sodium-ion batteries
    Li, Yafeng
    Mao, Haijuan
    Zheng, Cheng
    Wang, Jingjing
    Che, Zongzhou
    Wei, Mingdeng
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2020, 136
  • [33] Lepidocrocite Titanate-Graphene Composites for Sodium-Ion Batteries
    Barim, Gozde
    Yin, Wei
    Lin, Jason
    Song, Chengyu
    Kuykendall, Tevye R.
    Takeuchi, Kenneth J.
    Takeuchi, Esther S.
    Marschilok, Amy C.
    Doeff, Marca M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (45): : 19065 - 19073
  • [34] One-step Convenient Hydrothermal Synthesis of MoS2/RGO as a High-performance Anode for Sodium-ion Batteries
    Song, Haishen
    Tang, Anping
    Xu, Guorong
    Liu, Lihua
    Yin, Mengjia
    Pan, Yijin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (05): : 4720 - 4730
  • [35] Sodium-Ion Batteries
    Slater, Michael D.
    Kim, Donghan
    Lee, Eungje
    Johnson, Christopher S.
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) : 947 - 958
  • [36] Sodium-ion batteries
    不详
    PRZEMYSL CHEMICZNY, 2019, 98 (05): : 702 - 703
  • [37] Graphene-Based Nanomaterials for Sodium-Ion Batteries
    Lu, Yong
    Lu, Yanying
    Niu, Zhiqiang
    Chen, Jun
    ADVANCED ENERGY MATERIALS, 2018, 8 (17)
  • [38] Sodium-Ion Batteries
    Rojo, Teofilo
    Hu, Yong-Sheng
    Forsyth, Maria
    Li, Xiaolin
    ADVANCED ENERGY MATERIALS, 2018, 8 (17)
  • [39] Vertical graphene nanosheetsmodified Al current collectors for high-performance sodium-ion batteries
    Wang, Kexin
    Wang, Chongzhen
    Yang, Hao
    Wang, Xiongbiao
    Cao, Feng
    Wu, Qinci
    Peng, Hailin
    NANO RESEARCH, 2020, 13 (07) : 1948 - 1954
  • [40] Phosphorus Nanoparticles Encapsulated in Graphene Scrolls as a High-Performance Anode for Sodium-Ion Batteries
    Pei, Longkai
    Zhao, Qing
    Chen, Chengcheng
    Liang, Jing
    Chen, Jun
    CHEMELECTROCHEM, 2015, 2 (11): : 1652 - 1655