High-Performance Sodium-Ion Batteries and Sodium-Ion Pseudocapacitors Based on MoS2/Graphene Composites

被引:190
|
作者
Wang, Yun-Xiao [1 ]
Chou, Shu-Lei [1 ]
Wexler, David [2 ]
Liu, Hua-Kun [1 ]
Dou, Shi-Xue [1 ]
机构
[1] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2519, Australia
[2] Univ Wollongong, Ctr Electron Microscopy, Wollongong, NSW 2519, Australia
基金
澳大利亚研究理事会;
关键词
energy storage; expanded MoS2; hydrothermal methods; graphene composites; pseudocapacitors; sodium-ion batteries; REDUCED GRAPHENE OXIDE; HIGH-CAPACITY; STORAGE MECHANISM; ANODE MATERIALS; HARD-CARBON; LOW-COST; LITHIUM; CATHODE; INSERTION; MOS2;
D O I
10.1002/chem.201402563
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion energy storage, including sodium-ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium-ion energy storage. It is an intriguing prospect, especially for large-scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d-spacing, a contribution of the graphene matrix, and the unique properties of the MoS2/G substantially optimize Na storage behavior, by accommodating large volume changes and facilitating fast ion diffusion. MoS2/G exhibits a stable capacity of approximately 350 mAh g(-1) over 200 cycles at 0.25 C in half cells, and delivers a capacitance of 50 F g(-1) over 2000 cycles at 1.5 C in pseudocapacitors with a wide voltage window of 0.1-2.5 V.
引用
收藏
页码:9607 / 9612
页数:6
相关论文
共 50 条
  • [21] Renewable-Juglone-Based High-Performance Sodium-Ion Batteries
    Wang, Hua
    Hu, Pengfei
    Yang, Jie
    Gong, Guangming
    Guo, Lin
    Chen, Xiaodong
    ADVANCED MATERIALS, 2015, 27 (14) : 2348 - 2354
  • [22] Intermediate phases in sodium intercalation into MoS2 nanosheets and their implications for sodium-ion batteries
    Li, Qianqian
    Yao, Zhenpeng
    Wu, Jinsong
    Mitra, Sagar
    Hao, Shiqiang
    Sahu, Tuhin Subhra
    Li, Yuan
    Wolverton, Chris
    Dravid, Vinayak P.
    NANO ENERGY, 2017, 38 : 342 - 349
  • [23] MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes
    David, Lamuel
    Bhandavat, Romil
    Singh, Gurpreet
    ACS NANO, 2014, 8 (02) : 1759 - 1770
  • [24] Ultrathin MoS2 Nanosheets as Anode Materials for Sodium-Ion Batteries with Superior Performance
    Su, Dawei
    Dou, Shixue
    Wang, Guoxiu
    ADVANCED ENERGY MATERIALS, 2015, 5 (06)
  • [25] β-NaMnO2: A High-Performance Cathode for Sodium-Ion Batteries
    Billaud, Juliette
    Clement, Raphaele J.
    Armstrong, A. Robert
    Canales-Vazquez, Jesus
    Rozier, Patrick
    Grey, Clare P.
    Bruce, Peter G.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (49) : 17243 - 17248
  • [26] Developing High-Performance Metal Selenides for Sodium-Ion Batteries
    Hao, Zhiqiang
    Shi, Xiaoyan
    Yang, Zhuo
    Li, Lin
    Chou, Shu-Lei
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (51)
  • [27] Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries
    Li, Chuanping
    Qiu, Min
    Li, Ruiling
    Li, Xuan
    Wang, Manxi
    He, Jiabo
    Lin, Ganggang
    Xiao, Liren
    Qian, Qingrong
    Chen, Qinghua
    Wu, Junxiong
    Li, Xiaoyan
    Mai, Yiu-Wing
    Chen, Yuming
    ADVANCED FIBER MATERIALS, 2022, 4 (01) : 43 - 65
  • [28] An Organic Pigment as a High-Performance Cathode for Sodium-Ion Batteries
    Luo, Wei
    Allen, Marshall
    Raju, Vadivukarasi
    Ji, Xiulei
    ADVANCED ENERGY MATERIALS, 2014, 4 (15)
  • [29] Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries
    Chuanping Li
    Min Qiu
    Ruiling Li
    Xuan Li
    Manxi Wang
    Jiabo He
    Ganggang Lin
    Liren Xiao
    Qingrong Qian
    Qinghua Chen
    Junxiong Wu
    Xiaoyan Li
    Yiu-Wing Mai
    Yuming Chen
    Advanced Fiber Materials, 2022, 4 : 43 - 65
  • [30] Solid-State Synthesis of Layered MoS2 Nanosheets with Graphene for Sodium-Ion Batteries
    Chothe, Ujjwala
    Ugale, Chitra
    Kulkarni, Milind
    Kale, Bharat
    CRYSTALS, 2021, 11 (06):