High-Performance Sodium-Ion Batteries and Sodium-Ion Pseudocapacitors Based on MoS2/Graphene Composites

被引:190
|
作者
Wang, Yun-Xiao [1 ]
Chou, Shu-Lei [1 ]
Wexler, David [2 ]
Liu, Hua-Kun [1 ]
Dou, Shi-Xue [1 ]
机构
[1] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2519, Australia
[2] Univ Wollongong, Ctr Electron Microscopy, Wollongong, NSW 2519, Australia
基金
澳大利亚研究理事会;
关键词
energy storage; expanded MoS2; hydrothermal methods; graphene composites; pseudocapacitors; sodium-ion batteries; REDUCED GRAPHENE OXIDE; HIGH-CAPACITY; STORAGE MECHANISM; ANODE MATERIALS; HARD-CARBON; LOW-COST; LITHIUM; CATHODE; INSERTION; MOS2;
D O I
10.1002/chem.201402563
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion energy storage, including sodium-ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium-ion energy storage. It is an intriguing prospect, especially for large-scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d-spacing, a contribution of the graphene matrix, and the unique properties of the MoS2/G substantially optimize Na storage behavior, by accommodating large volume changes and facilitating fast ion diffusion. MoS2/G exhibits a stable capacity of approximately 350 mAh g(-1) over 200 cycles at 0.25 C in half cells, and delivers a capacitance of 50 F g(-1) over 2000 cycles at 1.5 C in pseudocapacitors with a wide voltage window of 0.1-2.5 V.
引用
收藏
页码:9607 / 9612
页数:6
相关论文
共 50 条
  • [1] Advanced MoS2 and graphene heterostructures as high-performance anode for sodium-ion batteries
    Li, Jianhui
    Wang, Hongkang
    Wei, Wei
    Meng, Lingjie
    NANOTECHNOLOGY, 2019, 30 (10)
  • [2] An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries
    Wang, Jingjing
    Luo, Chao
    Gao, Tao
    Langrock, Alex
    Mignerey, Alice C.
    Wang, Chunsheng
    SMALL, 2015, 11 (04) : 473 - 481
  • [3] High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites
    Chen, Zheng
    Augustyn, Veronica
    Jia, Xilai
    Xiao, Qiangfeng
    Dunn, Bruce
    Lu, Yunfeng
    ACS NANO, 2012, 6 (05) : 4319 - 4327
  • [4] Facile synthesis of hybrid MoS2/graphene nanosheets as high-performance anode for sodium-ion batteries
    Rong Zhang
    Jinkai Wang
    Chao Li
    Ting Liu
    Tianhao Yao
    Lei Zhu
    Xiaogang Han
    Hongkang Wang
    Ionics, 2020, 26 : 711 - 717
  • [5] Facile synthesis of hybrid MoS2/graphene nanosheets as high-performance anode for sodium-ion batteries
    Zhang, Rong
    Wang, Jinkai
    Li, Chao
    Liu, Ting
    Yao, Tianhao
    Zhu, Lei
    Han, Xiaogang
    Wang, Hongkang
    IONICS, 2020, 26 (02) : 711 - 717
  • [6] Synthesis of Grain-like MoS2 for High-Performance Sodium-Ion Batteries
    Yao, Kai
    Xu, Zhanwei
    Li, Zhi
    Liu, Xinyue
    Shen, Xuetao
    Cao, Liyun
    Huang, Jianfeng
    CHEMSUSCHEM, 2018, 11 (13) : 2130 - 2137
  • [7] MoS2 Nanoflowers with Expanded Interlayers as High-Performance Anodes for Sodium-Ion Batteries
    Hu, Zhe
    Wang, Lixiu
    Zhang, Kai
    Wang, Jianbin
    Cheng, Fangyi
    Tao, Zhanliang
    Chen, Jun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (47) : 12794 - 12798
  • [8] Synthesis of polyvalent ion reaction of MoS2/CoS2-RGO anode materials for high-performance sodium-ion batteries and sodium-ion capacitors
    Liu, Jian
    Xu, Ying-Ge
    Kong, Ling-Bin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 575 : 42 - 53
  • [9] Conversion of MoS2 to a Ternary MoS2-xSex Alloy for High-Performance Sodium-Ion Batteries
    Zhang, Yaqiong
    Tao, Huachao
    Du, Shaolin
    Yang, Xuelin
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) : 11327 - 11337
  • [10] Vertically Oriented MoS2 with Spatially Controlled Geometry on Nitrogenous Graphene Sheets for High-Performance Sodium-Ion Batteries
    Li, Ping
    Jeong, Jong Yeob
    Jin, Bingjun
    Zhang, Kan
    Park, Jong Hyeok
    ADVANCED ENERGY MATERIALS, 2018, 8 (19)