Lower Bounds on some certain van der Waerden Functions

被引:0
|
作者
Tian, Fang [1 ]
Liu, Zi-Long [2 ]
机构
[1] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai, Peoples R China
[2] Univ Shanghai Sci & Technol China, Sch Comp & Elect Engn, Shanghai, Peoples R China
关键词
van der Waerden numbers; arithmetic progressions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For positive integers r and k(1), k(2), ..., k(r), the vander Waerden number W(k(1), k(2), ... , k(r); r) is the minimum integer N such that whenever set {1, 2, ..., N} is partitioned into r sets S-1, S-2, ..., S-r, there is a k(i)-term arithmetic progression contained in Si for some i. This paper establishes an asymptotic lower bound for W(k, m; 2) for fixed m >= 3 which improves the result of T.C. Brown et al's in [Bounds on some van der Waerden numbers. J. Combin. Theory, Ser.A 115 (2008), 1304-1309]. Some lower bounds on certain van der Waerden-like functions are also proposed.
引用
收藏
页码:55 / 63
页数:9
相关论文
共 50 条
  • [21] On the level sets of the Takagi-van der Waerden functions
    Allaart, Pieter C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) : 1168 - 1180
  • [22] Infinite derivatives of the Takagi-Van der Waerden functions
    Ferrera, Juan
    Gil, Javier Gomez
    Llorente, Jesus
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 987 - 1003
  • [23] van der Waerden and the Primes
    Alpoge, Levent
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (08): : 784 - 785
  • [24] ON A FUNCTION OF VAN DER WAERDEN
    SCHUBERT, SR
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (04): : 402 - &
  • [25] The van der Waerden complex
    Ehrenborg, Richard
    Govindaiah, Likith
    Park, Peter S.
    Readdy, Margaret
    JOURNAL OF NUMBER THEORY, 2017, 172 : 287 - 300
  • [26] SOME RESULTS ON A CLASS OF MIXED VAN DER WAERDEN NUMBERS
    Maran, Kaushik
    Reddy, Sai Praneeth
    Sharma, Dravyansh
    Tripathi, Amitabha
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (03) : 885 - 904
  • [27] Van der Waerden rings
    Remus, Dieter
    Ursul, Mihail
    TOPOLOGY AND ITS APPLICATIONS, 2017, 229 : 148 - 175
  • [28] JULIA VAN DER WAERDEN
    van der Waerden, Julia
    STRAD, 2019, 130 (1553): : 94 - 95
  • [29] A lower bound for off-diagonal van der Waerden numbers
    Li, Yusheng
    Shu, Jinlong
    ADVANCES IN APPLIED MATHEMATICS, 2010, 44 (03) : 243 - 247
  • [30] On some generalizations of the van der Waerden number w(3)
    Landman, BM
    DISCRETE MATHEMATICS, 1999, 207 (1-3) : 137 - 147