On the level sets of the Takagi-van der Waerden functions

被引:4
|
作者
Allaart, Pieter C. [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
Takagi function; Van der Waerden function; Nowhere-differentiable function; Level set; Correlated random walk; CORRELATED RANDOM-WALK;
D O I
10.1016/j.jmaa.2014.05.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper examines the level sets of the continuous but nowhere differentiable functions fr(x) = Sigma r(-n) phi(r(n)x,) where phi(x) is the distance from x to the nearest integer, and r is an integer with r >= 2. It is shown, by using properties of a symmetric correlated random walk, that almost all level sets of fr are finite (with respect to Lebesgue measure on the range of f), but that for an abscissa x chosen at random from [0,1), the level set at level y = fr(x) is uncountable almost surely. As a result, the occupation measure of fr is singular. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1168 / 1180
页数:13
相关论文
共 50 条
  • [1] Superdifferential Analysis of the Takagi-Van Der Waerden Functions
    Ferrera, Juan
    Gomez Gil, Javier
    Llorente, Jesus
    SET-VALUED AND VARIATIONAL ANALYSIS, 2022, 30 (03) : 811 - 826
  • [2] Superdifferential Analysis of the Takagi-Van Der Waerden Functions
    Juan Ferrera
    Javier Gómez Gil
    Jesús Llorente
    Set-Valued and Variational Analysis, 2022, 30 : 811 - 826
  • [3] Infinite derivatives of the Takagi-Van der Waerden functions
    Ferrera, Juan
    Gil, Javier Gomez
    Llorente, Jesus
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 987 - 1003
  • [4] Generalized Takagi-Van der Waerden Functions and their Subdifferentials
    Ferrera, Juan
    Gomez Gil, Javier
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (04) : 1355 - 1369
  • [5] APPROXIMATE DIFFERENTIABILITY IN THE GENERALIZED TAKAGI-VAN DER WAERDEN CLASS
    Ferrera, J.
    Gomez Gil, J.
    Llorente, J.
    ANALYSIS MATHEMATICA, 2022, 48 (04) : 1033 - 1046
  • [6] Smooth interpolation, Holder continuity, and the Takagi-van der Waerden function
    Brown, JB
    Kozlowski, G
    AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (02): : 142 - 147
  • [7] Approximate Differentiability in the Generalized Takagi—Van Der Waerden Class
    J. Ferrera
    J. Gómez Gil
    J. Llorente
    Analysis Mathematica, 2022, 48 : 1033 - 1046
  • [8] On functions of van der Waerden type
    Rubinstein, A. I.
    Telyakovskii, D. S.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2023, 23 (03): : 339 - 347
  • [9] Combinatorial Structures on van der Waerden sets
    Tyros, Konstantinos
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (06): : 929 - 953
  • [10] On the lower bound for van der Waerden functions
    D. A. Shabanov
    Mathematical Notes, 2010, 87 : 918 - 920