Isogeometric finite element analysis of interior acoustic problems

被引:35
|
作者
Wu, Haijun [1 ]
Ye, Wenjing [2 ]
Jiang, Weikang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech & Engn, State Key Lab Mech Syst & Vibrat, Inst Vibrat Shock & Noise, Shanghai 200240, Peoples R China
[2] Hong Kong Univ Sci & Technol, Sch Engn, Dept Mech & Aerosp Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Isogeometric analysis; Finite element method; NURBS; Interior acoustic problems; FLUID-STRUCTURE INTERACTION; HELMHOLTZ-EQUATION; REFINEMENT; DISPERSION; NURBS; MESH;
D O I
10.1016/j.apacoust.2015.07.002
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Isogeometric Analysis (IGA) can bridge the gap between geometrical and numerical modeling. To this end, the same basis functions used in Computer Aided Design are applied to represent geometry and approximate physical field in analysis. In this paper, the IGA is firstly introduced to finite element method (FEM) for interior acoustic problems. The domain is parameterized by Non-Uniform Rational B-Spline (NURBS) in the algorithm, which simplifies the mesh generation greatly and furthermore supplies an exact representation of curved boundaries. In addition, the IGA FEM possesses a distinct feature of flexible order-elevation technique without modifying the geometry. Several numerical examples are presented to validate the accuracy and demonstrate the merits of the IGA FEM in the analysis of interior acoustic problems. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:63 / 73
页数:11
相关论文
共 50 条
  • [41] From the finite element analysis to the isogeometric analysis in an object oriented computing environment
    Rypl, Daniel
    Patzak, Borek
    ADVANCES IN ENGINEERING SOFTWARE, 2012, 44 (01) : 116 - 125
  • [42] Hybrid finite element-wave-based method for steady-state interior structural-acoustic problems
    van Hal, B
    Desmet, W
    Vandepitte, D
    COMPUTERS & STRUCTURES, 2005, 83 (2-3) : 167 - 180
  • [43] Isogeometric Analysis: Toward Unification of Computer Aided Design and Finite Element Analysis
    Bazilevs, Y.
    Calo, V. M.
    Cottrell, J. A.
    Evans, J.
    Hughes, T. J. R.
    Lipton, S.
    Scott, M. A.
    Sederberg, T. W.
    TRENDS IN ENGINEERING COMPUTATIONAL TECHNOLOGY, 2008, : 1 - 16
  • [44] Multigrid solvers for immersed finite element methods and immersed isogeometric analysis
    F. de Prenter
    C. V. Verhoosel
    E. H. van Brummelen
    J. A. Evans
    C. Messe
    J. Benzaken
    K. Maute
    Computational Mechanics, 2020, 65 : 807 - 838
  • [45] Finite element and isogeometric correlation analysis using modal assurance criterion
    Asma, F.
    Kacel, S.
    MECHANIKA, 2017, 23 (01): : 132 - 137
  • [46] Isogeometric finite element method for the dynamic analysis of functionally graded plates
    Lahdiri, Abdelhafid
    Hadji, Lazreg
    Atmane, Hassen Ait
    Kadri, Mohammed
    COUPLED SYSTEMS MECHANICS, 2024, 13 (06): : 509 - 527
  • [47] Interior penalty preconditioners for mixed finite element approximations of elliptic problems
    Rusten, T
    Vassilevski, PS
    Winther, R
    MATHEMATICS OF COMPUTATION, 1996, 65 (214) : 447 - 466
  • [48] Wave finite element method based on isogeometric analysis for periodic structures
    Lei, Zhen
    Liu, Tengfei
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (24)
  • [49] Multigrid solvers for immersed finite element methods and immersed isogeometric analysis
    de Prenter, F.
    Verhoosel, C. V.
    van Brummelen, E. H.
    Evans, J. A.
    Messe, C.
    Benzaken, J.
    Maute, K.
    COMPUTATIONAL MECHANICS, 2020, 65 (03) : 807 - 838
  • [50] An isogeometric analysis Bezier interface element for mechanical and poromechanical fracture problems
    Irzal, F.
    Remmers, J. J. C.
    Verhoosel, C. V.
    de Borst, R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 97 (08) : 608 - 628