Transcriptome sequencing of the Microarray Quality Control (MAQC) RNA reference samples using next generation sequencing

被引:61
|
作者
Mane, Shrinivasrao P. [2 ]
Evans, Clive [2 ]
Cooper, Kristal L. [2 ]
Crasta, Oswald R. [2 ]
Folkerts, Otto [2 ]
Hutchison, Stephen K. [3 ]
Harkins, Timothy T. [4 ]
Thierry-Mieg, Danielle [5 ]
Thierry-Mieg, Jean [5 ]
Jensen, Roderick V. [1 ]
机构
[1] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA
[2] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA
[3] 454 Life Sci Inc, Branford, CT 06405 USA
[4] Roche Appl Sci, Indianapolis, IN 46250 USA
[5] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20894 USA
来源
BMC GENOMICS | 2009年 / 10卷
关键词
GENE-EXPRESSION; CELL TRANSCRIPTOME; DISCOVERY;
D O I
10.1186/1471-2164-10-264
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Transcriptome sequencing using next-generation sequencing platforms will soon be competing with DNA microarray technologies for global gene expression analysis. As a preliminary evaluation of these promising technologies, we performed deep sequencing of cDNA synthesized from the Microarray Quality Control (MAQC) reference RNA samples using Roche's 454 Genome Sequencer FLX. Results: We generated more that 3.6 million sequence reads of average length 250 bp for the MAQC A and B samples and introduced a data analysis pipeline for translating cDNA read counts into gene expression levels. Using BLAST, 90% of the reads mapped to the human genome and 64% of the reads mapped to the RefSeq database of well annotated genes with e-values <= 10(-20). We measured gene expression levels in the A and B samples by counting the numbers of reads that mapped to individual RefSeq genes in multiple sequencing runs to evaluate the MAQC quality metrics for reproducibility, sensitivity, specificity, and accuracy and compared the results with DNA microarrays and Quantitative RT-PCR (QRTPCR) from the MAQC studies. In addition, 88% of the reads were successfully aligned directly to the human genome using the AceView alignment programs with an average 90% sequence similarity to identify 137,899 unique exon junctions, including 22,193 new exon junctions not yet contained in the RefSeq database. Conclusion: Using the MAQC metrics for evaluating the performance of gene expression platforms, the ExpressSeq results for gene expression levels showed excellent reproducibility, sensitivity, and specificity that improved systematically with increasing shotgun sequencing depth, and quantitative accuracy that was comparable to DNA microarrays and QRTPCR. In addition, a careful mapping of the reads to the genome using the AceView alignment programs shed new light on the complexity of the human transcriptome including the discovery of thousands of new splice variants.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Transcriptome sequencing of the Microarray Quality Control (MAQC) RNA reference samples using next generation sequencing
    Shrinivasrao P Mane
    Clive Evans
    Kristal L Cooper
    Oswald R Crasta
    Otto Folkerts
    Stephen K Hutchison
    Timothy T Harkins
    Danielle Thierry-Mieg
    Jean Thierry-Mieg
    Roderick V Jensen
    BMC Genomics, 10
  • [2] Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing
    Kesherwani, Varun
    Shahshahan, Hamid R.
    Mishra, Paras K.
    PLOS ONE, 2017, 12 (08):
  • [3] Quality control of next-generation sequencing data without a reference
    Trivedil, Urmi H.
    Cezard, Timothee
    Bridgett, Stephen
    Montazam, Anna
    Nichols, Jenna
    Blaxter, Mark
    Gharbi, Karim
    FRONTIERS IN GENETICS, 2014, 5
  • [4] Transcriptome Profiling Using Next-Generation Sequencing
    Asmann, Yan W.
    Wallace, Michael B.
    Thompson, E. Aubrey
    GASTROENTEROLOGY, 2008, 135 (05) : 1466 - 1468
  • [5] Transcriptome analysis using next-generation sequencing
    Mutz, Kai-Oliver
    Heilkenbrinker, Alexandra
    Loenne, Maren
    Walter, Johanna-Gabriela
    Stahl, Frank
    CURRENT OPINION IN BIOTECHNOLOGY, 2013, 24 (01) : 22 - 30
  • [6] Characterizing The Small Rna Transcriptome Associated With COPD And Ild Using Next Generation Sequencing
    Campbell, J. D.
    Luo, L.
    Liu, G.
    Xiao, J.
    Gerrein, J.
    Guardela, B.
    Tedrow, J. R.
    Aleksyev, Y.
    Yang, I. V.
    Correll, M.
    Geraci, M. W.
    Quackenbush, J.
    Sciurba, F. C.
    Schwartz, D. A.
    Kaminski, N.
    Lenburg, M.
    Beane, J.
    Spira, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 187
  • [7] Transcriptome Analysis of mRNA in Uterine Leiomyoma Using Next-generation RNA Sequencing
    Anjum, Shadab
    Sahar, Tahreem
    Nigam, Aruna
    Wajid, Saima
    ANTI-CANCER AGENTS IN MEDICINAL CHEMISTRY, 2019, 19 (14) : 1703 - 1718
  • [8] Next Generation Glycan Microarray Enabled by Next Generation Sequencing
    Yan, Maomao
    Lasanajak, Yi
    Smith, David F.
    Song, Xuezheng
    GLYCOBIOLOGY, 2018, 28 (12) : 1067 - 1068
  • [9] Impact of RNA degradation on next-generation sequencing transcriptome data
    Lu, Wenxiang
    Zhou, Qin
    Chen, Yi
    GENOMICS, 2022, 114 (04)
  • [10] Quality Control in Next-Generation Sequencing Using DNA fingerprinting
    Akabari, R.
    Zheng, Z.
    Lal, J.
    Gandhi, S.
    Qin, D.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2015, 17 (06): : 847 - 847