Transcriptome sequencing of the Microarray Quality Control (MAQC) RNA reference samples using next generation sequencing

被引:61
|
作者
Mane, Shrinivasrao P. [2 ]
Evans, Clive [2 ]
Cooper, Kristal L. [2 ]
Crasta, Oswald R. [2 ]
Folkerts, Otto [2 ]
Hutchison, Stephen K. [3 ]
Harkins, Timothy T. [4 ]
Thierry-Mieg, Danielle [5 ]
Thierry-Mieg, Jean [5 ]
Jensen, Roderick V. [1 ]
机构
[1] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA
[2] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA
[3] 454 Life Sci Inc, Branford, CT 06405 USA
[4] Roche Appl Sci, Indianapolis, IN 46250 USA
[5] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20894 USA
来源
BMC GENOMICS | 2009年 / 10卷
关键词
GENE-EXPRESSION; CELL TRANSCRIPTOME; DISCOVERY;
D O I
10.1186/1471-2164-10-264
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Transcriptome sequencing using next-generation sequencing platforms will soon be competing with DNA microarray technologies for global gene expression analysis. As a preliminary evaluation of these promising technologies, we performed deep sequencing of cDNA synthesized from the Microarray Quality Control (MAQC) reference RNA samples using Roche's 454 Genome Sequencer FLX. Results: We generated more that 3.6 million sequence reads of average length 250 bp for the MAQC A and B samples and introduced a data analysis pipeline for translating cDNA read counts into gene expression levels. Using BLAST, 90% of the reads mapped to the human genome and 64% of the reads mapped to the RefSeq database of well annotated genes with e-values <= 10(-20). We measured gene expression levels in the A and B samples by counting the numbers of reads that mapped to individual RefSeq genes in multiple sequencing runs to evaluate the MAQC quality metrics for reproducibility, sensitivity, specificity, and accuracy and compared the results with DNA microarrays and Quantitative RT-PCR (QRTPCR) from the MAQC studies. In addition, 88% of the reads were successfully aligned directly to the human genome using the AceView alignment programs with an average 90% sequence similarity to identify 137,899 unique exon junctions, including 22,193 new exon junctions not yet contained in the RefSeq database. Conclusion: Using the MAQC metrics for evaluating the performance of gene expression platforms, the ExpressSeq results for gene expression levels showed excellent reproducibility, sensitivity, and specificity that improved systematically with increasing shotgun sequencing depth, and quantitative accuracy that was comparable to DNA microarrays and QRTPCR. In addition, a careful mapping of the reads to the genome using the AceView alignment programs shed new light on the complexity of the human transcriptome including the discovery of thousands of new splice variants.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Analysis of the sequencing quality of next-generation sequencing for the entire mitochondrial genome in decomposed human samples
    Lee, Seung Eun
    Kim, Ga Eun
    Lee, Dong Yeon
    Kim, Hajin
    Kim, Moon-Young
    INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2025, 139 (02) : 551 - 562
  • [22] QUALITY CONTROL IN NEXT-GENERATION SEQUENCING HLA TYPING
    Cano, Pedro
    Li, Ming
    HLA, 2017, 89 (06) : 430 - 431
  • [24] Quality control implementation for universal characterization of DNA and RNA viruses in clinical respiratory samples using single metagenomic next-generation sequencing workflow
    Bal, A.
    Pichon, M.
    Picard, C.
    Casalegno, J. S.
    Valette, M.
    Schuffenecker, I.
    Billard, L.
    Vallet, S.
    Vilchez, G.
    Cheynet, V.
    Oriol, G.
    Trouillet-Assant, S.
    Gillet, Y.
    Lina, B.
    Brengel-Pesce, K.
    Morfin, F.
    Josset, L.
    BMC INFECTIOUS DISEASES, 2018, 18
  • [25] Quality control implementation for universal characterization of DNA and RNA viruses in clinical respiratory samples using single metagenomic next-generation sequencing workflow
    A. Bal
    M. Pichon
    C. Picard
    J. S. Casalegno
    M. Valette
    I. Schuffenecker
    L. Billard
    S. Vallet
    G. Vilchez
    V. Cheynet
    G. Oriol
    S. Trouillet-Assant
    Y. Gillet
    B. Lina
    K. Brengel-Pesce
    F. Morfin
    L. Josset
    BMC Infectious Diseases, 18
  • [26] Viral genome sequencing and small RNA detection by next generation sequencing
    Siegrist, F.
    Otten-Hernandez, P.
    Thomas, Y.
    Farinelli, L.
    Kaiser, L.
    Tapparel, C.
    CYTOKINE, 2012, 59 (03) : 565 - 565
  • [27] The RNA structurome: transcriptome-wide structure probing with next-generation sequencing
    Kwok, Chun Kit
    Tang, Yin
    Assmann, Sarah M.
    Bevilacqua, Philip C.
    TRENDS IN BIOCHEMICAL SCIENCES, 2015, 40 (04) : 221 - 232
  • [28] Next-generation sequencing of the CHO cell transcriptome
    Jennifer Becker
    Christina Timmermann
    Tobias Jakobi
    Oliver Rupp
    Rafael Szczepanowski
    Matthias Hackl
    Alexander Goesmann
    Andreas Tauch
    Nicole Borth
    Johannes Grillari
    Alfred Pühler
    Thomas Noll
    Karina Brinkrolf
    BMC Proceedings, 5 (Suppl 8)
  • [29] Next-Generation Transcriptome Sequencing of the Normal Breast
    Clare, S. E.
    Pardo, I.
    Mathieson, T.
    Lillemoe, H. A.
    Goulet, R. J., Jr.
    Henry, J. E.
    Sun, J.
    Mitchum, P.
    Parsons, E.
    Jackson, V. P.
    Rager, E. L.
    Kennedy, P. R.
    Willimas-Bowling, M.
    Savader, B.
    Westphal, S. M.
    Pennington, R. E.
    Walker, K. H.
    Ritter, H. E.
    Berg, R. C., Jr.
    Bangs, R.
    Badve, S.
    Liu, Y.
    Radovich, M.
    Rufenbarger, C. A.
    Storniolo, A. M. V.
    CANCER RESEARCH, 2010, 70
  • [30] Comparison of next generation sequencing technologies for transcriptome characterization
    P Kerr Wall
    Jim Leebens-Mack
    André S Chanderbali
    Abdelali Barakat
    Erik Wolcott
    Haiying Liang
    Lena Landherr
    Lynn P Tomsho
    Yi Hu
    John E Carlson
    Hong Ma
    Stephan C Schuster
    Douglas E Soltis
    Pamela S Soltis
    Naomi Altman
    Claude W dePamphilis
    BMC Genomics, 10