Quality control of next-generation sequencing data without a reference

被引:51
|
作者
Trivedil, Urmi H. [1 ]
Cezard, Timothee [1 ]
Bridgett, Stephen [1 ]
Montazam, Anna [1 ]
Nichols, Jenna [1 ]
Blaxter, Mark [1 ,2 ]
Gharbi, Karim [1 ,2 ]
机构
[1] Univ Edinburgh, Edinburgh Genom, Ashworth Labs, Edinburgh EH9 3JT, Midlothian, Scotland
[2] Univ Edinburgh, Inst Evolutionary Biol, Ashworth Labs, Edinburgh EH9 3JT, Midlothian, Scotland
关键词
GENOME; ALIGNMENT;
D O I
10.3389/fgene.2014.00111
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Next-generation sequencing (NGS) technologies have dramatically expanded the breadth of genomics. Genome-scale data, once restricted to a small number of biomedical model organisms, can now be generated for virtually any species at remarkable speed and low cost. Yet non-model organisms often lack a suitable reference to map sequence reads against, making alignment-based quality control (QC) of NGS data more challenging than cases where a well-assembled genome is already available. Here we show that by generating a rapid, non-optimized draft assembly of raw reads, it is possible to obtain reliable and informative QC metrics, thus removing the need for a high quality reference. We use benchmark datasets generated from control samples across a range of genome sizes to illustrate that QC inferences made using draft assemblies are broadly equivalent to those made using a well-established reference, and describe QC tools routinely used in our production facility to assess the quality of NGS data from non-model organisms.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Determining the quality and complexity of next-generation sequencing data without a reference genome
    Anvar, Seyed Yahya
    Khachatryan, Lusine
    Vermaat, Martijn
    van Galen, Michiel
    Pulyakhina, Irina
    Ariyurek, Yavuz
    Kraaijeveld, Ken
    den Dunnen, Johan T.
    de Knijff, Peter
    't Hoen, Peter Ac
    Laros, Jeroen F. J.
    [J]. GENOME BIOLOGY, 2014, 15 (12): : 555
  • [2] Determining the quality and complexity of next-generation sequencing data without a reference genome
    Seyed Yahya Anvar
    Lusine Khachatryan
    Martijn Vermaat
    Michiel van Galen
    Irina Pulyakhina
    Yavuz Ariyurek
    Ken Kraaijeveld
    Johan T den Dunnen
    Peter de Knijff
    Peter AC ’t Hoen
    Jeroen FJ Laros
    [J]. Genome Biology, 15
  • [3] QACtools: A Quality Assessment and Quality Control Tool for Next-Generation Sequencing Data
    Song, Dandan
    Li, Ning
    Liao, Lejian
    [J]. PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT TECHNOLOGY AND SYSTEMS, 2015, 338 : 463 - 470
  • [4] Next-Generation Sequencing: Next-Generation Quality in Pediatrics
    Wortmann, Saskia B.
    Spenger, Johannes
    Preisel, Martin
    Koch, Johannes
    Rauscher, Christian
    Bader, Ingrid
    Mayr, Johannes A.
    Sperl, Wolfgang
    [J]. PADIATRIE UND PADOLOGIE, 2018, 53 (06): : 278 - 283
  • [5] Reference standards for next-generation sequencing
    Simon A. Hardwick
    Ira W. Deveson
    Tim R. Mercer
    [J]. Nature Reviews Genetics, 2017, 18 : 473 - 484
  • [6] Reference standards for next-generation sequencing
    Hardwick, Simon A.
    Deveson, Ira W.
    Mercer, Tim R.
    [J]. NATURE REVIEWS GENETICS, 2017, 18 (08) : 473 - 484
  • [7] QUALITY CONTROL IN NEXT-GENERATION SEQUENCING HLA TYPING
    Cano, Pedro
    Li, Ming
    [J]. HLA, 2017, 89 (06) : 430 - 431
  • [8] Masking as an effective quality control method for next-generation sequencing data analysis
    Sajung Yun
    Sijung Yun
    [J]. BMC Bioinformatics, 15
  • [9] Masking as an effective quality control method for next-generation sequencing data analysis
    Yun, Sajung
    Yun, Sijung
    [J]. BMC BIOINFORMATICS, 2014, 15
  • [10] SWQC: Efficient sequencing data quality control on the next-generation sunway platform
    Yan, Lifeng
    Yin, Zekun
    Zhang, Tong
    Zhu, Fangjin
    Duan, Xiaohui
    Schmidt, Bertil
    Liu, Weiguo
    [J]. Future Generation Computer Systems, 2025, 164