On a Poincare type inequality

被引:29
|
作者
Planchon, F [1 ]
机构
[1] Univ Paris 06, Anal Numer Lab, CNRS, URA 189, F-75252 Paris, France
关键词
D O I
10.1016/S0764-4442(00)88138-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be such that its Fourier transform is supported outside the unit ball. We prove the following inequality parallel to \ f \ q(-1) parallel to(Lq') less than or similar to parallel to del(\ f \(q-1))parallel to(Lq'), for q greater than or equal to 2. For q = 2 this is nothing but Poincare inequality, while by using Holder we get parallel to \ f \(q/2) parallel to del(\ f \(q/2))parallel to(L2), which has interesting applications for partial differential equations. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:21 / 23
页数:3
相关论文
共 50 条
  • [41] From the Brunn-Minkowski inequality to a class of Poincare-type inequalities
    Colesanti, Andrea
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (05) : 765 - 772
  • [42] ON A FREQUENCY LOCALIZED BERNSTEIN INEQUALITY AND SOME GENERALIZED POINCARE-TYPE INEQUALITIES
    Li, Dong
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (05) : 933 - 945
  • [43] A CR Poincare inequality on the complex sphere
    Sun, Lijing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) : 1090 - 1100
  • [44] A reversed Poincare inequality for monotone functions
    Benguria, RD
    Depassier, MC
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2000, 5 (01) : 91 - 96
  • [45] A (φn/s, φ)-POINCARE INEQUALITY ON JOHNDOMAINS
    Feng, S.
    Liang, T.
    ANALYSIS MATHEMATICA, 2024, 50 (03) : 827 - 859
  • [46] A Remark on the Steklov-Poincare Inequality
    Nasibov, Sh. M.
    MATHEMATICAL NOTES, 2021, 110 (1-2) : 221 - 225
  • [47] The ∞-Poincare Inequality in Metric Measure Spaces
    Durand-Cartagena, Estibalitz
    Jaramillo, Jesus A.
    Shanmugalingam, Nageswari
    MICHIGAN MATHEMATICAL JOURNAL, 2012, 61 (01) : 63 - 85
  • [48] Poincare's inequality on stratified sets
    Kulyaba, VV
    Penkin, OM
    DOKLADY MATHEMATICS, 2002, 66 (02) : 220 - 223
  • [49] The Poincare inequality and reverse doubling weights
    Hurri-Syrjänen, R
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2004, 47 (02): : 206 - 214
  • [50] The Conditional Poincare Inequality for Filter Stability
    Kim, Jin Won
    Mehta, Prashant G.
    Meyn, Sean
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1629 - 1636