On a Poincare type inequality

被引:29
|
作者
Planchon, F [1 ]
机构
[1] Univ Paris 06, Anal Numer Lab, CNRS, URA 189, F-75252 Paris, France
关键词
D O I
10.1016/S0764-4442(00)88138-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be such that its Fourier transform is supported outside the unit ball. We prove the following inequality parallel to \ f \ q(-1) parallel to(Lq') less than or similar to parallel to del(\ f \(q-1))parallel to(Lq'), for q greater than or equal to 2. For q = 2 this is nothing but Poincare inequality, while by using Holder we get parallel to \ f \(q/2) parallel to del(\ f \(q/2))parallel to(L2), which has interesting applications for partial differential equations. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:21 / 23
页数:3
相关论文
共 50 条
  • [31] On a (q, p)-Poincare inequality
    Harjulehto, Petteri
    Hurri-Syrjanen, Ritva
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 61 - 68
  • [32] ON THE (1, p)-POINCARE INEQUALITY
    Harjulehto, Petteri
    Hurri-Syrjanen, Ritva
    Vahakangas, Antti V.
    ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (03) : 905 - 930
  • [33] Metric currents and the Poincare inequality
    Fassler, Katrin
    Orponen, Tuomas
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (02)
  • [34] Poincare inequality on the stratified sets
    Kulyaba, V.V.
    Penkin, O.M.
    2002, National Academy of Sciences (386)
  • [35] On the Uniformity of the Constant in the Poincare Inequality
    Ruiz, David
    ADVANCED NONLINEAR STUDIES, 2012, 12 (04) : 889 - 903
  • [36] On the Poincare inequality for vector fields
    Lanconelli, E
    Morbidelli, D
    ARKIV FOR MATEMATIK, 2000, 38 (02): : 327 - 342
  • [37] A Poincare inequality on loop spaces
    Chen, Xin
    Li, Xue-Mei
    Wu, Bo
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (06) : 1421 - 1442
  • [38] A Fefferman-Poincare type inequality for Carnot-Caratheodory vector fields
    Di Fazio, G
    Zamboni, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (09) : 2655 - 2660
  • [39] Sharp Poincare-Type Inequality for the Gaussian Measure on the Boundary of Convex Sets
    Kolesnikov, Alexander V.
    Milman, Emanuel
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2017, 2169 : 221 - 234
  • [40] INEQUALITY OF POINCARE-FRIEDRICH'S TYPE ON L-p SPACES
    Dostanic, Milutin R.
    MATEMATICKI VESNIK, 2005, 57 (1-2): : 11 - 14