Analysis of a slow-fast system near a cusp singularity

被引:9
|
作者
Jardon-Kojakhmetov, H. [1 ]
Broer, Henk W. [1 ]
Roussarie, R. [2 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, POB 407, NL-9700 AK Groningen, Netherlands
[2] Univ Bourgogne, CNRS, Inst Math Bourgogne, UMR 5584, BP 47 870, F-21078 Dijon, France
关键词
PERTURBATION-THEORY;
D O I
10.1016/j.jde.2015.10.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies a slow fast system whose principal characteristic is that the slow manifold is given by the critical set of the cusp catastrophe. Our analysis consists of two main parts: first, we recall a formal normal form suitable for systems as the one studied here; afterwards, taking advantage of this normal form, we investigate the transition near the cusp singularity by means of the blow up technique. Our contribution relies heavily in the usage of normal form theory, allowing us to refine previous results. (C) 2015 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:3785 / 3843
页数:59
相关论文
共 50 条
  • [21] Singular Bautin bifurcation analysis of a slow-fast predator-prey system
    Saha, Tapan
    Chowdhury, Pranali Roy
    Pal, Pallav Jyoti
    Banerjee, Malay
    NONLINEAR DYNAMICS, 2024, 112 (09) : 7695 - 7713
  • [22] Dynamic analysis of a slow-fast oscillator based on a coupled Duffing memristive system
    Michaux Kountchou Noube
    Vitrice Ruben Folifack Signing
    Hilaire Bertrand Fotsin
    International Journal of Dynamics and Control, 2023, 11 : 453 - 472
  • [23] Synchronization of slow-fast systems
    I. Omelchenko
    M. Rosenblum
    A. Pikovsky
    The European Physical Journal Special Topics, 2010, 191 : 3 - 14
  • [24] Minkowski Dimension and Slow-Fast Polynomial Lienard Equations Near Infinity
    De Maesschalck, Peter
    Huzak, Renato
    Janssens, Ansfried
    Radunovic, Goran
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (04)
  • [25] Synchronization of slow-fast systems
    Omelchenko, I.
    Rosenblum, M.
    Pikovsky, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 191 (01): : 3 - 14
  • [26] Slow-fast torus knots
    Huzak, Renato
    Jardon-Kojakhmetov, Hildeberto
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 29 (03) : 371 - 388
  • [27] SYNCHRONY IN SLOW-FAST METACOMMUNITIES
    Rinaldi, Sergio
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (07): : 2447 - 2453
  • [28] Geometric Desingularization of a Cusp Singularity in Slow–Fast Systems with Applications to Zeeman’s Examples
    Henk W. Broer
    Tasso J. Kaper
    Martin Krupa
    Journal of Dynamics and Differential Equations, 2013, 25 : 925 - 958
  • [29] SLOW-FAST COINCIDENCE SYSTEM FOR A FAST NEUTRON TIME-OF-FLIGHT SPECTROMETER
    HORVATH, P
    JUNA, J
    KONECNY, K
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1963, 13 (10) : 754 - &
  • [30] Novel results for a class of singular perturbed slow-fast system
    Wang, Xiaoyun
    Wang, Li
    Wu, Yunjin
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 : 795 - 806