The validation of toxicological prediction models

被引:0
|
作者
Archer, G
Balls, M
Bruner, LH
Curren, RD
Fentem, JH
Holzhutter, HG
Liebsch, M
Lovell, DP
Southee, JA
机构
[1] PROCTER & GAMBLE CO,HLTH & BEAUTY CARE EUROPE,EGHAM TW20 9NW,SURREY,ENGLAND
[2] INST VITRO SCI INC,GAITHERSBURG,MD 20878
[3] HUMBOLDT UNIV BERLIN,BEREICH MED CHARITE,INST BIOCHEM,D-10117 BERLIN,GERMANY
[4] BUNDESINST GESUNDHEITLICHEN VERBRAUCHERSCHUTZ & V,ZEBET,D-12277 BERLIN,GERMANY
[5] BRITISH IND BIOL RES ASSOC,CARSHALTON SM5 4DS,SURREY,ENGLAND
[6] UNIV STIRLING,MICROBIOL ASSOCIATES LTD,STIRLING FK9 4NF,SCOTLAND
来源
ATLA-ALTERNATIVES TO LABORATORY ANIMALS | 1997年 / 25卷 / 05期
关键词
alternative method; model criticism; prediction model; validation;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
An alternative method is shown to consist of two parts: the test system itself; and a prediction model for converting in vitro endpoints into predictions of in vivo toxicity. For the alternative method to be relevant and reliable, it is important that its prediction model component is of high predictive power and is sufficiently robust against sources of data variability. In other words, the prediction model must be subjected to criticism, leading successful models to the state of confirmation. It is shown that there are certain circumstances in which a new prediction model may be introduced without the necessity to generate new test system data.
引用
收藏
页码:505 / 516
页数:12
相关论文
共 50 条
  • [31] Development and validation of prediction models for sickness absence in The Netherlands
    Roelen, C. A. M.
    Bultmann, U.
    van Rhenen, W.
    Groothoff, J. W.
    van der Klink, J. J. L.
    Twisk, J. W. R.
    Heymans, M. W.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2012, 22 : 73 - 73
  • [32] Validation of spatial prediction models for landslide susceptibility maps
    Bai, S. B.
    Wang, J.
    Pozdnoukhov, A.
    Kanevski, M.
    PROCEEDINGS OF THE 8TH INTERNATIONAL SYMPOSIUM ON SPATIAL ACCURACY ASSESSMENT IN NATURAL RESOURCES AND ENVIRONMENTAL SCIENCES, VOL I: SPATIAL UNCERTAINTY, 2008, : 280 - 286
  • [33] CROSS-VALIDATION PERFORMANCE OF MORTALITY PREDICTION MODELS
    HADORN, DC
    DRAPER, D
    ROGERS, WH
    KEELER, EB
    BROOK, RH
    STATISTICS IN MEDICINE, 1992, 11 (04) : 475 - 489
  • [34] Experimental validation of PV power output prediction models
    Coelho, Andre
    Castro, Rui
    2012 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2012, : 705 - 710
  • [35] Economic and environmental validation of disease risk prediction models
    Te Beest, D.
    van den Bosch, F.
    PHYTOPATHOLOGY, 2007, 97 (07) : S114 - S114
  • [36] Validation of Biomarker-Based Risk Prediction Models
    Taylor, Jeremy M. G.
    Ankerst, Donna P.
    Andridge, Rebecca R.
    CLINICAL CANCER RESEARCH, 2008, 14 (19) : 5977 - 5983
  • [37] Basic principles of modelling, validation of models and prediction.
    Bourgeois, CM
    COST 914- PREDICTIVE MICROBIOLOGY APPLIED TO CHILLED FOOD PRESERVATION, 1999, : 29 - 34
  • [38] Cross validation of USARIEM heat strain prediction models
    Cadarette, BS
    Montain, SJ
    Kolka, MA
    Stroschein, L
    Matthew, W
    Sawka, MN
    AVIATION SPACE AND ENVIRONMENTAL MEDICINE, 1999, 70 (10): : 996 - 1006
  • [39] Impact of statins on validation of ICH mortality prediction models
    Naval, Neeraj S.
    Mirski, Marek A.
    Carhuapoma, Juan R.
    NEUROLOGICAL RESEARCH, 2009, 31 (04) : 425 - 429
  • [40] An empirical comparison of validation methods for software prediction models
    Ali, Asad
    Gravino, Carmine
    JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS, 2021, 33 (08)