Nonlinear mean-field Fokker-Planck equations and their applications in physics, astrophysics and biology

被引:22
|
作者
Chavanis, Pierre-Henri [1 ]
机构
[1] Univ Toulouse 3, Phys Theor Lab, F-31062 Toulouse, France
关键词
generalized Fokker-Planck equations; Vlasov equation; long-range interactions;
D O I
10.1016/j.crhy.2006.01.004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss a general class of nonlinear mean-field Fokker-Planck equations [P.-H. Chavanis, Phys. Rev. E 68 (2003) 036108] and show their applications in different domains of physics, astrophysics and biology. These equations are associated with generalized entropic functionals and non-Boltzmannian distributions (Fermi-Dirac, Bose-Einstein, Tsallis,...). They furthermore involve an arbitrary binary potential of interaction. We emphasize analogies between different topics (two-dimensional turbulence, self-gravitating systems, Debye-Huckel theory of electrolytes, porous media, chemotaxis of bacterial populations, Bose-Einstein condensation, BMF model, Cahn-Hilliard equations,...) which were previously disconnected. All these examples (and probably many others) are particular cases of this general class of nonlinear mean-field Fokker-Planck equations.
引用
收藏
页码:318 / 330
页数:13
相关论文
共 50 条
  • [21] Towards Nonlinear Quantum Fokker-Planck Equations
    Roumen Tsekov
    International Journal of Theoretical Physics, 2009, 48 : 1431 - 1435
  • [22] Asymptotic controllability of nonlinear Fokker-Planck equations
    Barbu, Viorel
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (09):
  • [23] Towards Nonlinear Quantum Fokker-Planck Equations
    Tsekov, Roumen
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (05) : 1431 - 1435
  • [24] Generalized solutions to nonlinear Fokker-Planck equations
    Barbu, Viorel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (04) : 2446 - 2471
  • [25] The invariance principle for nonlinear Fokker-Planck equations
    Barbu, Viorel
    Rockner, Michael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 315 : 200 - 221
  • [26] Nonlinear Fokker-Planck equations associated with generalized entropies and stability analyses with application to a mean-field model of the self- gravitating system
    Shiino, M
    SIMILARITY IN DIVERSITY, 2003, : 213 - 225
  • [27] DYNAMICAL ORDERING - APPLICATIONS TO FOKKER-PLANCK EQUATIONS
    ORLOWSKI, A
    WODKIEWICZ, K
    PHYSICAL REVIEW A, 1994, 50 (04): : 3401 - 3408
  • [28] Fokker-Planck equations of jumping particles and mean field games of impulse control
    Bertucci, Charles
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (05): : 1211 - 1244
  • [29] The kinetic Fokker-Planck equation with mean field interaction
    Guillin, Arnaud
    Liu, Wei
    Wu, Liming
    Zhang, Chaoen
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 150 : 1 - 23
  • [30] PROBABILISTIC REPRESENTATION FOR SOLUTIONS TO NONLINEAR FOKKER-PLANCK EQUATIONS
    Barbu, Viorel
    Roeckner, Michael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) : 4246 - 4260