Asymptotic controllability of nonlinear Fokker-Planck equations

被引:1
|
作者
Barbu, Viorel [1 ,2 ]
机构
[1] Alexandru Ioan Cuza Univ, Iasi, Romania
[2] Romanian Acad, Octav Mayer Inst Math, Iasi, Romania
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2021年 / 136卷 / 09期
关键词
D O I
10.1140/epjp/s13360-021-01865-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss here the asymptotic controllability problem for the Fokker-Planck equations, rho(t) - Delta beta(rho) + div(u rho) = 0 in (0, infinity) x R-d, rho(0, x) = rho(0)(x), x is an element of R-d, that is, the existence of a feedback controller u equivalent to u(x, rho) such that lim(t ->infinity) rho(t, x) = rho(1)(x), a.e. x is an element of R-d, where rho(0), rho(1) are given probability densities and beta is an element of C-2(R) is a monotonically increasing function. In this work, it is designed such a controller u for a certain class of final states rho(1) which is identified. This problem is related to the controllability of McKean-Vlasov stochastic differential equations and the approach used here relies on the H-theorem established in (Barbu, Rockner in Indiana Univ Math J, 2020), Theorem 6.1, for nonlinear and nondegenerate Fokker-Planck equations.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Asymptotic controllability of nonlinear Fokker–Planck equations
    Viorel Barbu
    [J]. The European Physical Journal Plus, 136
  • [2] Stochastic nonlinear Fokker-Planck equations
    Coghi, Michele
    Gess, Benjamin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 259 - 278
  • [3] Solution of nonlinear Fokker-Planck equations
    Drozdov, AN
    Morillo, M
    [J]. PHYSICAL REVIEW E, 1996, 54 (01): : 931 - 937
  • [4] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S.
    Plastino, A.R.
    Plastino, A.
    [J]. Physica A: Statistical Mechanics and its Applications, 1998, 259 (1-2): : 183 - 192
  • [5] Linearization of nonlinear Fokker-Planck equations and applications
    Ren, Panpan
    Roeckner, Michael
    Wang, Feng-Yu
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 322 : 1 - 37
  • [6] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S
    Plastino, AR
    Plastino, A
    [J]. PHYSICA A, 1998, 259 (1-2): : 183 - 192
  • [7] ON THE ASYMPTOTIC EQUIVALENCE OF THE FOKKER-PLANCK AND DIFFUSION-EQUATIONS
    BEALS, R
    PROTOPOPESCU, V
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 1983, 12 (02): : 109 - 127
  • [8] Microscopic dynamics of nonlinear Fokker-Planck equations
    Santos, Leonardo
    [J]. PHYSICAL REVIEW E, 2021, 103 (03)
  • [9] Entropy production and nonlinear Fokker-Planck equations
    Casas, G. A.
    Nobre, F. D.
    Curado, E. M. F.
    [J]. PHYSICAL REVIEW E, 2012, 86 (06):
  • [10] Autocorrelation functions of nonlinear Fokker-Planck equations
    T. D. Frank
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 37 : 139 - 142