Asymptotic controllability of nonlinear Fokker-Planck equations

被引:1
|
作者
Barbu, Viorel [1 ,2 ]
机构
[1] Alexandru Ioan Cuza Univ, Iasi, Romania
[2] Romanian Acad, Octav Mayer Inst Math, Iasi, Romania
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2021年 / 136卷 / 09期
关键词
D O I
10.1140/epjp/s13360-021-01865-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss here the asymptotic controllability problem for the Fokker-Planck equations, rho(t) - Delta beta(rho) + div(u rho) = 0 in (0, infinity) x R-d, rho(0, x) = rho(0)(x), x is an element of R-d, that is, the existence of a feedback controller u equivalent to u(x, rho) such that lim(t ->infinity) rho(t, x) = rho(1)(x), a.e. x is an element of R-d, where rho(0), rho(1) are given probability densities and beta is an element of C-2(R) is a monotonically increasing function. In this work, it is designed such a controller u for a certain class of final states rho(1) which is identified. This problem is related to the controllability of McKean-Vlasov stochastic differential equations and the approach used here relies on the H-theorem established in (Barbu, Rockner in Indiana Univ Math J, 2020), Theorem 6.1, for nonlinear and nondegenerate Fokker-Planck equations.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Random Walks Associated with Nonlinear Fokker-Planck Equations
    Mendes, Renio dos Santos
    Lenzi, Ervin Kaminski
    Malacarne, Luis Carlos
    Picoli, Sergio
    Jauregui, Max
    [J]. ENTROPY, 2017, 19 (04)
  • [22] Multivariate nonlinear Fokker-Planck equations and generalized thermostatistics
    Frank, TD
    Daffertshofer, A
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 292 (1-4) : 392 - 410
  • [23] EXACT CONTROLLABILITY OF FOKKER-PLANCK EQUATIONS AND MCKEAN-VLASOV SDEs*
    Barbu, Viorel
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (03) : 1805 - 1818
  • [24] NONLINEAR FOKKER-PLANCK EQUATION AS AN ASYMPTOTIC REPRESENTATION OF MASTER EQUATION
    HORSTHEMKE, W
    BRENIG, L
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1977, 27 (04): : 341 - 348
  • [25] Invariants of Fokker-Planck equations
    Sumiyoshi Abe
    [J]. The European Physical Journal Special Topics, 2017, 226 : 529 - 532
  • [26] Invariants of Fokker-Planck equations
    Abe, Sumiyoshi
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03): : 529 - 532
  • [27] Deformed fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (04): : 667 - 674
  • [28] GEOMETRIC FOKKER-PLANCK EQUATIONS
    Lebeau, Gilles
    [J]. PORTUGALIAE MATHEMATICA, 2005, 62 (04) : 469 - 530
  • [29] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666
  • [30] Dynamics of normal and anomalous diffusion in nonlinear Fokker-Planck equations
    V. Schwämmle
    E. M.F. Curado
    F. D. Nobre
    [J]. The European Physical Journal B, 2009, 70 : 107 - 116