Deep Learning Architecture for Recognition of Abnormal Activities

被引:4
|
作者
Khatrouch, Marwa [1 ]
Gnouma, Mariem [2 ]
Ejbali, Ridha [1 ,2 ]
Zaied, Mourad [2 ]
机构
[1] Univ Gabes, FSG, Gabes, Tunisia
[2] RTIM Res Team Intelligent Machines, Gabes, Tunisia
关键词
abnormal human activity recognition; anomaly detection; silhouette extraction; history of binary motion image; deep learning;
D O I
10.1117/12.2314834
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The video surveillance is one of the key areas in computer vision researches. The scientific challenge in this field involves the implementation of automatic systems to obtain detailed information about individuals and groups behaviors. In particular, the detection of abnormal movements of groups or individuals requires a fine analysis of frames in the video stream. In this article, we propose a new method to detect anomalies in crowded scenes. We try to categorize the video in a supervised mode accompanied by unsupervised learning using the principle of the autoencoder. In order to construct an informative concept for the recognition of these behaviors, we use a technique of representation based on the superposition of human silhouettes. The evaluation of the UMN dataset demonstrates the effectiveness of the proposed approach.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] ABNORMAL ACTIVITY RECOGNITION USING DEEP LEARNING IN STREAMING VIDEO FOR INDOOR APPLICATION
    Kumar, Dhananjay
    Sailaja, Srinivasan Ramapriya
    2021 ITU KALEIDOSCOPE CONFERENCE: CONNECTING PHYSICAL AND VIRTUAL WORLDS (ITU K), 2021, : 67 - 74
  • [32] Automated Recognition of Teacher and Student Activities in the Classroom: A Deep Learning Framework
    Yuvaraj, Rajamanickam
    Prince, A. Amalin
    Murugappan, M.
    IEEE ACCESS, 2024, 12 : 192159 - 192171
  • [33] An approach to sport activities recognition based on an inertial sensor and deep learning
    Pajak, Grzegorz
    Krutz, Pascal
    Patalas-Maliszewska, Justyna
    Rehm, Matthias
    Pajak, Iwona
    Dix, Martin
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 345
  • [34] Deep Learning in the Recognition of Activities of Daily Living Using Smartwatch Data
    Cavalcante, Ariany F.
    de L. Kunst, Victor H.
    de M. Chaves, Thiago
    de Souza, Julia D. T.
    Ribeiro, Isabela M.
    Quintino, Jonysberg P.
    da Silva, Fabio Q. B.
    Santos, Andre L. M.
    Teichrieb, Veronica
    da Gama, Alana Elza F.
    SENSORS, 2023, 23 (17)
  • [35] Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network
    He, Fei
    Han, Ye
    Wang, Han
    Ji, Jinchao
    Liu, Yuanning
    Ma, Zhiqiang
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (02)
  • [36] BWordDeepNet: a novel deep learning architecture for the recognition of online handwritten Bangla words
    Ankan Bhattacharyya
    Somnath Chatterjee
    Shibaprasad Sen
    SK MD Obaidullah
    Kaushik Roy
    Multimedia Tools and Applications, 2024, 83 : 45071 - 45093
  • [37] Real-Time Human Action Recognition Using Deep Learning Architecture
    Kahlouche, Souhila
    Belhocine, Mahmoud
    Menouar, Abdallah
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2021, 20 (04)
  • [38] iSPLInception: An Inception-ResNet Deep Learning Architecture for Human Activity Recognition
    Ronald, Mutegeki
    Poulose, Alwin
    Han, Dong Seog
    IEEE ACCESS, 2021, 9 : 68985 - 69001
  • [39] Dual-branch deep learning architecture enabling miner behavior recognition
    Wang Z.
    Liu Y.
    Yang Y.
    Duan S.
    Multimedia Tools and Applications, 2024, 83 (37) : 84523 - 84538
  • [40] Deep Learning Architecture for Group Activity Recognition using Description of Local Motions
    Felipe Borja-Borja, Luis
    Azorin-Lopez, Jorge
    Saval-Calvo, Marcelo
    Fuster-Guillo, Andres
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,