Dual-branch deep learning architecture enabling miner behavior recognition

被引:0
|
作者
Wang Z. [1 ]
Liu Y. [2 ]
Yang Y. [2 ]
Duan S. [2 ]
机构
[1] Xi’an Key Laboratory of Electrical Equipment Condition Mornitoring and Power Supply Security, Xi’an University of Science and Technology, Xi’an
[2] College of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an
基金
中国国家自然科学基金;
关键词
Discrimination; Spatiotemporal dual-branch; Transposed weighted representation; Unsafe behavior; Visual sensing;
D O I
10.1007/s11042-024-19164-1
中图分类号
学科分类号
摘要
Nonstandard miner behavior can have adverse effects on coal mine safety production. Therefore, accurately capturing miner behavior in complex environments is particularly important. In the intelligent mine monitoring system, using visual perception to detect miner behavior is a challenging task due to high behavioral similarity and difficult temporal relationships. In this paper, a new deep learning framework is proposed to construct a coal miner behavior recognition model with a spatio-temporal dual-branch structure and transposed attention representation mechanism. The spatio-temporal dual-branch structure extracts rich spatial semantic information from intrinsic safety video sensor input video sequences while ensuring effective capture of rapidly changing human behavior. Subsequently, considering the discrimination of miner behavior similarity, a merged transposed weighted representation mechanism (TWR) is introduced to guide the model in extracting feature information more strongly related to the classification target, thereby effectively improving the model’s ability to classify highly similar behaviors. Experiments were conducted on UCF101, HMDB51, and a self-built miner behavior dataset, achieving significant improvements compared to other state-of-the-art methods. This collaborative structure further creates a more discriminative behavior detection model, contributing to the reliability of miner behavior detection. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
引用
收藏
页码:84523 / 84538
页数:15
相关论文
共 50 条
  • [1] A Dual-Branch Deep Learning Architecture for Multisensor and Multitemporal Remote Sensing Semantic Segmentation
    Bergamasco, Luca
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 2147 - 2162
  • [2] Dual-branch deep learning architecture for enhanced hourly global horizontal irradiance forecasting
    Wang, Zhijie
    Tang, Yugui
    Zhang, Zhen
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
  • [3] Dual-Branch Residual Disentangled Adversarial Learning Network for Facial Expression Recognition
    Chen, Puhua
    Wang, Zhe
    Mao, Shasha
    Hui, Xinyue
    Ning, Huyan
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1840 - 1844
  • [4] Learning a dual-branch classifier for class incremental learning
    Guo, Lei
    Xie, Gang
    Qu, Youyang
    Yan, Gaowei
    Cui, Lei
    APPLIED INTELLIGENCE, 2023, 53 (04) : 4316 - 4326
  • [5] Learning a dual-branch classifier for class incremental learning
    Lei Guo
    Gang Xie
    Youyang Qu
    Gaowei Yan
    Lei Cui
    Applied Intelligence, 2023, 53 : 4316 - 4326
  • [6] Incremental Learning Based on Dual-Branch Network
    Dong, Mingda
    Zhang, Zhizhong
    Xie, Yuan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 263 - 272
  • [7] Dual-branch network based on transformer for texture recognition
    Liu, Yangqi
    Dong, Hao
    Wang, Guodong
    Chen, Chenglizhao
    DIGITAL SIGNAL PROCESSING, 2024, 153
  • [8] Deep Image Classification Model Based on Dual-Branch
    Chen, Haoyu
    Lv, Qi
    Zhou, Wei
    Zheng, Jiang
    Wang, Jian
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 636 - 643
  • [9] Dual-branch deep image prior for image denoising
    Xu, Shaoping
    Cheng, Xiaohui
    Luo, Jie
    Xiao, Nan
    Xiong, Minghai
    Zhou, Changfei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 93
  • [10] CMNet: deep learning model for colon polyp segmentation based on dual-branch structure
    Cao, Xuguang
    Fan, Kefeng
    Xu, Cun
    Ma, Huilin
    Jiao, Kaijie
    JOURNAL OF MEDICAL IMAGING, 2024, 11 (02)