CRISPR technologies for precise epigenome editing

被引:202
|
作者
Nakamura, Muneaki [1 ]
Gao, Yuchen [1 ,2 ,5 ]
Dominguez, Antonia A. [1 ,6 ]
Qi, Lei S. [1 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Canc Biol Program, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem & Syst Biol, Stanford, CA 94305 USA
[4] Stanford Univ, Stanford ChEM H Inst, Stanford, CA 94305 USA
[5] Mammoth Biosci, San Francisco, CA USA
[6] Sana Biotechnol, San Francisco, CA USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
DNA METHYLATION; REGULATORY ELEMENTS; GENE-EXPRESSION; CHROMATIN; ENHANCERS; IDENTIFICATION; ACTIVATION; THOUSANDS; BINDING; TARGET;
D O I
10.1038/s41556-020-00620-7
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Qi and colleagues review CRISPR-based epigenome engineering technologies to modulate histone and DNA modifications and to perturb DNA and RNA regulatory elements and chromatin organization. The epigenome involves a complex set of cellular processes governing genomic activity. Dissecting this complexity necessitates the development of tools capable of specifically manipulating these processes. The repurposing of prokaryotic CRISPR systems has allowed for the development of diverse technologies for epigenome engineering. Here, we review the state of currently achievable epigenetic manipulations along with corresponding applications. With future optimization, CRISPR-based epigenomic editing stands as a set of powerful tools for understanding and controlling biological function.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 50 条
  • [1] CRISPR technologies for precise epigenome editing
    Muneaki Nakamura
    Yuchen Gao
    Antonia A. Dominguez
    Lei S. Qi
    Nature Cell Biology, 2021, 23 : 11 - 22
  • [2] CRISPR technologies for genome, epigenome and transcriptome editing
    Villiger, Lukas
    Joung, Julia
    Koblan, Luke
    Weissman, Jonathan
    Abudayyeh, Omar O.
    Gootenberg, Jonathan S.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2024, 25 (03) : 160 - 160
  • [3] Targeted genome and epigenome editing using CRISPR-Cas and TALE technologies
    Joung, Keith
    TRANSGENIC RESEARCH, 2014, 23 (05) : 840 - 840
  • [4] Targeted Genome and Epigenome Editing Using Engineered CRISPR-Cas and TALE Technologies
    Joung, J. Keith
    HUMAN GENE THERAPY, 2014, 25 (11) : A10 - A10
  • [5] Landmark CRISPR Approvals and the Rise of Epigenome Editing
    Livshits, Geulah
    GEN BIOTECHNOLOGY, 2023, 2 (06): : 476 - 478
  • [6] Epigenome editing technologies for discovery and medicine
    McCutcheon, Sean R.
    Rohm, Dahlia
    Iglesias, Nahid
    Gersbach, Charles A.
    NATURE BIOTECHNOLOGY, 2024, 42 (08) : 1199 - 1217
  • [7] CRISPR/Cas mediated epigenome editing for cancer therapy
    Ansari, Imran
    Chaturvedi, Animesh
    Chitkara, Deepak
    Singh, Saurabh
    SEMINARS IN CANCER BIOLOGY, 2022, 83 : 570 - 583
  • [8] CRISPR-based epigenome editing: mechanisms and applications
    Fadul, Shaima M.
    Arshad, Aleeza
    Mehmood, Rashid
    EPIGENOMICS, 2023, 15 (21) : 1137 - 1155
  • [9] Rapidly evolving genome and epigenome editing technologies
    Tran, Ngoc Tung
    Han, Renzhi
    MOLECULAR THERAPY, 2024, 32 (09) : 2803 - 2806
  • [10] CRISPR tool enables precise genome editing
    Platt, Randall J.
    NATURE, 2019, 576 (7787) : 395 - 395