CRISPR technologies for precise epigenome editing

被引:202
|
作者
Nakamura, Muneaki [1 ]
Gao, Yuchen [1 ,2 ,5 ]
Dominguez, Antonia A. [1 ,6 ]
Qi, Lei S. [1 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Canc Biol Program, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem & Syst Biol, Stanford, CA 94305 USA
[4] Stanford Univ, Stanford ChEM H Inst, Stanford, CA 94305 USA
[5] Mammoth Biosci, San Francisco, CA USA
[6] Sana Biotechnol, San Francisco, CA USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
DNA METHYLATION; REGULATORY ELEMENTS; GENE-EXPRESSION; CHROMATIN; ENHANCERS; IDENTIFICATION; ACTIVATION; THOUSANDS; BINDING; TARGET;
D O I
10.1038/s41556-020-00620-7
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Qi and colleagues review CRISPR-based epigenome engineering technologies to modulate histone and DNA modifications and to perturb DNA and RNA regulatory elements and chromatin organization. The epigenome involves a complex set of cellular processes governing genomic activity. Dissecting this complexity necessitates the development of tools capable of specifically manipulating these processes. The repurposing of prokaryotic CRISPR systems has allowed for the development of diverse technologies for epigenome engineering. Here, we review the state of currently achievable epigenetic manipulations along with corresponding applications. With future optimization, CRISPR-based epigenomic editing stands as a set of powerful tools for understanding and controlling biological function.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 50 条
  • [41] CRISPR/Cas-Based Epigenome Editing: Advances, Applications, and Clinical Utility
    Goell, Jacob H.
    Hilton, Isaac B.
    TRENDS IN BIOTECHNOLOGY, 2021, 39 (07) : 678 - 691
  • [42] CRISPR-Based Epigenome Editing Screens in Primary Human T Cells
    McCutcheon, Sean
    Amador, Christian McRoberts
    Barrera, Alex
    Humayun, Lucas
    Gersbach, Charles
    MOLECULAR THERAPY, 2022, 30 (04) : 165 - 166
  • [43] Targeted Editing of the Epigenome with CRISPR Cas9 for Mechanistic Epigenetics.
    Hilton, I.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2017, 58 : S42 - S42
  • [44] Refining CRISPR-based genome and epigenome editing off-targets
    Luo, Yonglun
    CELL BIOLOGY AND TOXICOLOGY, 2019, 35 (04) : 281 - 283
  • [45] CRISPR-Analytics (CRISPR-A): A platform for precise analytics and simulations for gene editing
    Sanvicente-Garcia, Marta
    Garcia-Valiente, Albert
    Jouide, Socayna
    Jaraba-Wallace, Jessica
    Bautista, Eric
    Escobosa, Marc
    Sanchez-Mejias, Avencia
    Guell, Marc
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (05)
  • [46] Directed Evolution of CRISPR/Cas Systems for Precise Gene Editing
    Liu, Rongming
    Liang, Liya
    Freed, Emily F.
    Gill, Ryan T.
    TRENDS IN BIOTECHNOLOGY, 2021, 39 (03) : 262 - 273
  • [47] New Frontiers: Precise Editing of Allergen Genes Using CRISPR
    Brackett, Nicole F.
    Pomes, Anna
    Chapman, Martin D.
    FRONTIERS IN ALLERGY, 2022, 2
  • [48] Paving the way towards precise and safe CRISPR genome editing
    Sledzinski, Pawel
    Dabrowska, Magdalena
    Nowaczyk, Mateusz
    Olejniczak, Marta
    BIOTECHNOLOGY ADVANCES, 2021, 49
  • [49] Temporal and Spatial Epigenome Editing Allows Precise Gene Regulation in Mammalian Cells
    Kuscu, Cem
    Mammeadov, Rashad
    Czikora, Agnes
    Unlu, Hayrunnisa
    Tufan, Turan
    Fischer, Natasha Lopes
    Arslan, Sevki
    Bekiranov, Stefan
    Kanemaki, Masato
    Adli, Mazhar
    JOURNAL OF MOLECULAR BIOLOGY, 2019, 431 (01) : 111 - 121
  • [50] In vivo genome editing thrives with diversified CRISPR technologies
    Xun Ma
    Avery Sum-Yu Wong
    Hei-Yin Tam
    Samuel Yung-Kin Tsui
    Dittman Lai-Shun Chung
    Bo Feng
    Zoological Research, 2018, 39 (02) : 58 - 71