CRISPR-based epigenome editing: mechanisms and applications

被引:2
|
作者
Fadul, Shaima M. [1 ]
Arshad, Aleeza [2 ]
Mehmood, Rashid [1 ]
机构
[1] Alfaisal Univ, Coll Sci & Gen Studies, Dept Life Sci, Riyadh 11533, Saudi Arabia
[2] Ayub Teaching Hosp, Med Teaching Inst, Abbottabad 22020, Pakistan
关键词
DNA METHYLATION; GENE-EXPRESSION; EPIGENETIC REGULATION; REGULATORY ELEMENTS; CAS9; RIBONUCLEOPROTEIN; DONOR DNA; IN-VITRO; GENOME; TRANSCRIPTION; CLASSIFICATION;
D O I
10.2217/epi-2023-0281
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Epigenomic anomalies contribute significantly to the development of numerous human disorders. The development of epigenetic research tools is essential for understanding how epigenetic marks contribute to gene expression. A gene-editing technique known as CRISPR (clustered regularly interspaced short palindromic repeats) typically targets a particular DNA sequence using a guide RNA (gRNA). CRISPR/Cas9 technology has been remodeled for epigenome editing by generating a 'dead' Cas9 protein (dCas9) that lacks nuclease activity and juxtaposing it with an epigenetic effector domain. Based on fusion partners of dCas9, a specific epigenetic state can be achieved. CRISPR-based epigenome editing has widespread application in drug screening, cancer treatment and regenerative medicine. This paper discusses the tools developed for CRISPR-based epigenome editing and their applications. CRISPR/Cas9 system has been remodeled for epigenome editing by juxtaposing 'dead' dCas9 with an epigenetic effector domain. This tool has applications in cancer treatment and regenerative medicine.
引用
收藏
页码:1137 / 1155
页数:19
相关论文
共 50 条
  • [1] Transgenic mice for in vivo epigenome editing with CRISPR-based systems
    Matthew P. Gemberling
    Keith Siklenka
    Erica Rodriguez
    Katherine R. Tonn-Eisinger
    Alejandro Barrera
    Fang Liu
    Ariel Kantor
    Liqing Li
    Valentina Cigliola
    Mariah F. Hazlett
    Courtney A. Williams
    Luke C. Bartelt
    Victoria J. Madigan
    Josephine C. Bodle
    Heather Daniels
    Douglas C. Rouse
    Isaac B. Hilton
    Aravind Asokan
    Maria Ciofani
    Kenneth D. Poss
    Timothy E. Reddy
    Anne E. West
    Charles A. Gersbach
    Nature Methods, 2021, 18 : 965 - 974
  • [2] Transgenic mice for in vivo epigenome editing with CRISPR-based systems
    Gemberling, Matthew
    Siklenka, Keith
    Rodriguez, Erica
    Tonn-Eisinger, Katherine R.
    Barrera, Alejandro
    Liu, Fang
    Kantor, Ariel
    Li, Liqing
    Cigliola, Valentina
    Hazlett, Mariah F.
    Williams, Courtney
    Bartelt, Luke C.
    Madigan, Victoria J.
    Bodle, Josephine
    Daniels, Heather
    Rouse, Douglas C.
    Hilton, Isaac B.
    Asokan, Aravind
    Ciofani, Maria
    Poss, Kenneth D.
    Reddy, Timothy E.
    West, Anne E.
    Gersbach, Charles A.
    NATURE METHODS, 2021, 18 (08) : 965 - +
  • [3] An Overview of the CRISPR-Based Genomic- and Epigenome-Editing System: Function, Applications, and Challenges
    Qomi, Saeed Bozorg
    Asghari, Amir
    Mojarrad, Majid
    ADVANCED BIOMEDICAL RESEARCH, 2019, 8 (01): : 49
  • [4] Refining CRISPR-based genome and epigenome editing off-targets
    Yonglun Luo
    Cell Biology and Toxicology, 2019, 35 : 281 - 283
  • [5] Refining CRISPR-based genome and epigenome editing off-targets
    Luo, Yonglun
    CELL BIOLOGY AND TOXICOLOGY, 2019, 35 (04) : 281 - 283
  • [6] CRISPR-Based Epigenome Editing Screens in Primary Human T Cells
    McCutcheon, Sean
    Amador, Christian McRoberts
    Barrera, Alex
    Humayun, Lucas
    Gersbach, Charles
    MOLECULAR THERAPY, 2022, 30 (04) : 165 - 166
  • [7] Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing
    Nunez, James K.
    Chen, Jin
    Pommier, Greg C.
    Cogan, J. Zachery
    Replogle, Joseph M.
    Adriaens, Carmen
    Ramadoss, Gokul N.
    Shi, Quanming
    Hung, King L.
    Samelson, Avi J.
    Pogson, Angela N.
    Kim, James Y. S.
    Chung, Amanda
    Leonetti, Manuel D.
    Chang, Howard Y.
    Kampmann, Martin
    Bernstein, Bradley E.
    Hovestadt, Volker
    Gilbert, Luke A.
    Weissman, Jonathan S.
    CELL, 2021, 184 (09) : 2503 - +
  • [8] In Vivo Applications of CRISPR-Based Genome Editing in the Retina
    Yu, Wenhan
    Wu, Zhijian
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2018, 6
  • [9] Clinical applications of CRISPR-based genome editing and diagnostics
    Foss, Dana V.
    Hochstrasser, Megan L.
    Wilson, Ross C.
    TRANSFUSION, 2019, 59 (04) : 1389 - 1399
  • [10] Basic Principles and Clinical Applications of CRISPR-Based Genome Editing
    Lim, Jung Min
    Kim, Hyongbum Henry
    YONSEI MEDICAL JOURNAL, 2022, 63 (02) : 105 - 113