Replacing Sanger with Next Generation Sequencing to improve coverage and quality of reference DNA barcodes for plants

被引:40
|
作者
Wilkinson, Mike J. [1 ]
Szabo, Claudia [2 ]
Ford, Caroline S. [1 ]
Yarom, Yuval [2 ]
Croxford, Adam E. [3 ]
Camp, Amanda [4 ]
Gooding, Paul [5 ]
机构
[1] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Pwllpeiran Upland Res Ctr, Ceredigion SY23 4AB, Wales
[2] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
[3] Univ Adelaide, Sch Agr Food & Wine, Waite Campus, Glen Osmond, SA 5064, Australia
[4] Univ Adelaide, Sch Anim & Vet Sci, Roseworthy Campus, Roseworthy, SA 5371, Australia
[5] Australian Genome Res Facil, Plant Genom Ctr, Urrbrae, SA 5064, Australia
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
英国生物技术与生命科学研究理事会;
关键词
IDENTIFICATION; FAMILY; MATK; TALE;
D O I
10.1038/srep46040
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We estimate the global BOLD Systems database holds core DNA barcodes (rbcL + matK) for about 15% of land plant species and that comprehensive species coverage is still many decades away. Interim performance of the resource is compromised by variable sequence overlap and modest information content within each barcode. Our model predicts that the proportion of species-unique barcodes reduces as the database grows and that 'false' species-unique barcodes remain > 5% until the database is almost complete. We conclude the current rbcL + matK barcode is unfit for purpose. Genome skimming and supplementary barcodes could improve diagnostic power but would slow new barcode acquisition. We therefore present two novel Next Generation Sequencing protocols (with freeware) capable of accurate, massively parallel de novo assembly of high quality DNA barcodes of > 1400 bp. We explore how these capabilities could enhance species diagnosis in the coming decades.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] DNA barcodes from century-old type specimens using next-generation sequencing
    Prosser, Sean
    deWaard, Jeremy
    Miller, Scott
    Hebert, Paul D. N.
    GENOME, 2015, 58 (05) : 267 - 268
  • [22] DNA barcodes from century-old type specimens using next-generation sequencing
    Prosser, Sean W. J.
    deWaard, Jeremy R.
    Miller, Scott E.
    Hebert, Paul D. N.
    MOLECULAR ECOLOGY RESOURCES, 2016, 16 (02) : 487 - 497
  • [23] NGS (next generation sequencing) oder die gute alte Sanger-Sequenzierung? – Was ist zu beachten?NGS (next generation sequencing) or good old Sanger sequencing?—What has to be considered?
    Sabina Baumgartner-Parzer
    Journal für Klinische Endokrinologie und Stoffwechsel, 2022, 15 (4): : 145 - 151
  • [24] Quality Control in Next-Generation Sequencing Using DNA fingerprinting
    Akabari, R.
    Zheng, Z.
    Lal, J.
    Gandhi, S.
    Qin, D.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2015, 17 (06): : 847 - 847
  • [25] Performance evaluation of Sanger sequencing for the diagnosis of primary hyperoxaluria and comparison with targeted next generation sequencing
    Williams, Emma L.
    Bagg, Eleanor A. L.
    Mueller, Michael
    Vandrovcova, Jana
    Aitman, Timothy J.
    Rumsby, Gill
    MOLECULAR GENETICS & GENOMIC MEDICINE, 2015, 3 (01): : 69 - 78
  • [26] Reference standards for next-generation sequencing
    Simon A. Hardwick
    Ira W. Deveson
    Tim R. Mercer
    Nature Reviews Genetics, 2017, 18 : 473 - 484
  • [27] Next-generation DNA sequencing
    Jay Shendure
    Hanlee Ji
    Nature Biotechnology, 2008, 26 : 1135 - 1145
  • [28] Reference standards for next-generation sequencing
    Hardwick, Simon A.
    Deveson, Ira W.
    Mercer, Tim R.
    NATURE REVIEWS GENETICS, 2017, 18 (08) : 473 - 484
  • [29] Next-generation DNA sequencing
    Shendure, Jay
    Ji, Hanlee
    NATURE BIOTECHNOLOGY, 2008, 26 (10) : 1135 - 1145
  • [30] The future of 'next generation' DNA sequencing
    Brazil, Rachel
    Chemistry World, 2021, 18 (10): : 18 - 19