Minimal Surfaces in Hyperbolic 3-Manifolds

被引:3
|
作者
Coskunuzer, Baris [1 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
关键词
MANIFOLDS; HYPERSURFACES; AREA; EXISTENCE;
D O I
10.1002/cpa.21961
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of smoothly embedded closed minimal surfaces in infinite volume hyperbolic 3-manifolds except for some special cases. (C) 2020 Wiley Periodicals LLC
引用
收藏
页码:114 / 139
页数:26
相关论文
共 50 条
  • [31] Braids, orderings, and minimal volume cusped hyperbolic 3-manifolds
    Kin, Eiko
    Rolfsen, Dale
    GROUPS GEOMETRY AND DYNAMICS, 2018, 12 (03) : 961 - 1004
  • [32] Homotopy hyperbolic 3-manifolds are hyperbolic
    Gabai, D
    Meyerhoff, GR
    Thurston, N
    ANNALS OF MATHEMATICS, 2003, 157 (02) : 335 - 431
  • [33] CURVATURE ESTIMATES FOR MINIMAL-SURFACES IN 3-MANIFOLDS
    ANDERSON, MT
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1985, 18 (01): : 89 - 105
  • [34] Minimal surfaces in quasi-Fuchsian 3-manifolds
    Biao Wang
    Mathematische Annalen, 2012, 354 : 955 - 966
  • [35] Minimal surfaces in quasi-Fuchsian 3-manifolds
    Wang, Biao
    MATHEMATISCHE ANNALEN, 2012, 354 (03) : 955 - 966
  • [36] COUNTING MINIMAL SURFACES IN NEGATIVELY CURVED 3-MANIFOLDS
    Calegari, Danny
    Marques, Fernando C.
    Neves, Andre
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (08) : 1615 - 1648
  • [37] Strong limit multiplicity for arithmetic hyperbolic surfaces and 3-manifolds
    Mikołaj Frączyk
    Inventiones mathematicae, 2021, 224 : 917 - 985
  • [38] Strong limit multiplicity for arithmetic hyperbolic surfaces and 3-manifolds
    Fraczyk, Mikolaj
    INVENTIONES MATHEMATICAE, 2021, 224 (03) : 917 - 985
  • [39] Depth of pleated surfaces in toroidal cusps of hyperbolic 3-manifolds
    Wu, Ying-Qing
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (04): : 2175 - 2189
  • [40] MINIMAL SURFACES IN FINITE VOLUME NONCOMPACT HYPERBOLIC 3-MANIFOLDS (vol 209, pg 617, 2017)
    Collin, Pascal
    Hauswirth, Laurent
    Mazet, Laurent
    Rosenberg, Harold
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 7521 - 7524