Automatic Classification of Arrhythmic Beats Using Gaussian Processes

被引:3
|
作者
Skolidis, G. [1 ]
Clayton, R. H. [1 ]
Sanguinetti, G. [1 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield S1 4DP, S Yorkshire, England
关键词
D O I
10.1109/CIC.2008.4749193
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel approach to the automated discrimination of normal and ventricular arrhythmic beats. The method employs Gaussian Processes, a non-parametric Bayesian technique which is equivalent to a neural network with infinite hidden nodes. The method is shown to perform competitively with other approaches on the MIT-BIH Arrhythmia Database. Furthermore, its probabilistic nature allows to obtain confidence levels on the predictions, which can be very useful to practitioners.
引用
收藏
页码:921 / 924
页数:4
相关论文
共 50 条
  • [21] Automatic ischaemic beats classification using Genetic-based Least Square Support Vector Machine
    Murugan, S.
    Radhakrishnan, S.
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2012, 8 (01) : 36 - 48
  • [22] A Contribution to Deep Learning Approaches for Automatic Classification of Volcano-Seismic Events: Deep Gaussian Processes
    Lopez-Perez, Miguel
    Garcia, Luz
    Benitez, Carmen
    Molina, Rafael
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 3875 - 3890
  • [23] CONSTRAINED BAYESIAN OPTIMIZATION METHODS USING REGRESSION AND CLASSIFICATION GAUSSIAN PROCESSES AS CONSTRAINTS
    Jetton, Cole
    Li, Chengda
    Hoyle, Christopher
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 3B, 2023,
  • [24] Fault Detection and Classification for Nonlinear Chemical Processes using Lasso and Gaussian Process
    Du, Yuncheng
    Budman, Hector
    Duever, Thomas A.
    Du, Dongping
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (27) : 8962 - 8977
  • [25] Accurate posterior probability estimates for channel equalization using Gaussian processes for classification
    Perez-Cruz, Fernando
    Martinez-Olmos, Pablo
    Jose Murillo-Fuentest, Juan
    2007 IEEE 8TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, VOLS 1 AND 2, 2007, : 380 - +
  • [26] Divergence-Based One-Class Classification Using Gaussian Processes
    Bodesheim, Paul
    Rodner, Erik
    Freytag, Alexander
    Denzler, Joachim
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
  • [27] Adversarial Robustness Guarantees for Classification with Gaussian Processes
    Blaas, Arno
    Patane, Andrea
    Laurenti, Luca
    Cardelli, Luca
    Kwiatkowska, Marta
    Roberts, Stephen
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 3372 - 3381
  • [28] Extrinsic Gaussian Processes for Regression and Classification on Manifolds
    Lin, Lizhen
    Mu, Niu
    Cheung, Pokman
    Dunson, David
    BAYESIAN ANALYSIS, 2019, 14 (03): : 887 - 906
  • [29] Mean field methods for classification with Gaussian processes
    Opper, M
    Winther, O
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 309 - 315
  • [30] One-Class Classification with Gaussian Processes
    Kemmler, Michael
    Rodner, Erik
    Denzler, Joachim
    COMPUTER VISION - ACCV 2010, PT II, 2011, 6493 : 489 - 500