Adversarial Robustness Guarantees for Classification with Gaussian Processes

被引:0
|
作者
Blaas, Arno [1 ]
Patane, Andrea [2 ]
Laurenti, Luca [2 ]
Cardelli, Luca [2 ]
Kwiatkowska, Marta [2 ]
Roberts, Stephen [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford, England
[2] Univ Oxford, Dept Comp Sci, Oxford, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate adversarial robustness of Gaussian Process Classification (GPC) models. Given a compact subset of the input space T subset of R-d enclosing a test point x* and a GPC trained on a dataset D, we aim to compute the minimum and the maximum classification probability for the GPC over all the points in T. In order to do so, we show how functions lower- and upper-bounding the GPC output in T can be derived, and implement those in a branch and bound optimisation algorithm. For any error threshold epsilon > 0 selected a priori, we show that our algorithm is guaranteed to reach values epsilon-close to the actual values in finitely many iterations. We apply our method to investigate the robustness of GPC models on a 2D synthetic dataset, the SPAM dataset and a subset of the MNIST dataset, providing comparisons of different GPC training techniques, and show how our method can be used for interpretability analysis. Our empirical analysis suggests that GPC robustness increases with more accurate posterior estimation.
引用
下载
收藏
页码:3372 / 3381
页数:10
相关论文
共 50 条
  • [1] Adversarial Robustness Guarantees for Gaussian Processes
    Patane, Andrea
    Blaas, Arno
    Laurenti, Luca
    Cardelli, Luca
    Roberts, Stephen
    Kwiatkowska, Marta
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [2] Adversarial Robustness Guarantees for Gaussian Processes
    Patané, Andrea
    Blaas, Arno
    Laurenti, Luca
    Cardelli, Luca
    Roberts, Stephen
    Kwiatkowska, Marta
    Journal of Machine Learning Research, 2022, 23
  • [3] Robustness Guarantees for Bayesian Inference with Gaussian Processes
    Cardelli, Luca
    Kwiatkowska, Marta
    Laurenti, Luca
    Patane, Andrea
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 7759 - 7768
  • [4] Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation
    Hein, Matthias
    Andriushchenko, Maksym
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [5] Structural Extensions of Basis Pursuit: Guarantees on Adversarial Robustness
    Szeghy, David
    Aslan, Mahmoud
    Fothi, Aron
    Meszaros, Balazs
    Milacski, Zoltan Adam
    Lorincz, Andras
    DELTA: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON DEEP LEARNING THEORY AND APPLICATIONS, 2022, : 77 - 85
  • [6] Adversarial Robustness Guarantees for Random Deep Neural Networks
    De Palma, Giacomo
    Kiani, Bobak T.
    Lloyd, Seth
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [7] Benchmarking Adversarial Robustness on Image Classification
    Dong, Yinpeng
    Fu, Qi-An
    Yang, Xiao
    Pang, Tianyu
    Su, Hang
    Xiao, Zihao
    Zhu, Jun
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 318 - 328
  • [8] Safety Guarantees for Iterative Predictions with Gaussian Processes
    Polymenakos, Kyriakos
    Laurenti, Luca
    Patane, Andrea
    Calliess, Jan-Peter
    Cardelli, Luca
    Kwiatkowska, Marta
    Abate, Alessandro
    Roberts, Stephen
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 3187 - 3193
  • [9] A Review of Adversarial Robustness Evaluation for Image Classification
    Li, Zituo
    Sun, Jianbin
    Yang, Kewei
    Xiong, Dehui
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (10): : 2164 - 2189
  • [10] Sharp Statistical Guarantees for Adversarially Robust Gaussian Classification
    Dan, Chen
    Wei, Yuting
    Ravikumar, Pradeep
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119