Adversarial Robustness Guarantees for Classification with Gaussian Processes

被引:0
|
作者
Blaas, Arno [1 ]
Patane, Andrea [2 ]
Laurenti, Luca [2 ]
Cardelli, Luca [2 ]
Kwiatkowska, Marta [2 ]
Roberts, Stephen [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford, England
[2] Univ Oxford, Dept Comp Sci, Oxford, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate adversarial robustness of Gaussian Process Classification (GPC) models. Given a compact subset of the input space T subset of R-d enclosing a test point x* and a GPC trained on a dataset D, we aim to compute the minimum and the maximum classification probability for the GPC over all the points in T. In order to do so, we show how functions lower- and upper-bounding the GPC output in T can be derived, and implement those in a branch and bound optimisation algorithm. For any error threshold epsilon > 0 selected a priori, we show that our algorithm is guaranteed to reach values epsilon-close to the actual values in finitely many iterations. We apply our method to investigate the robustness of GPC models on a 2D synthetic dataset, the SPAM dataset and a subset of the MNIST dataset, providing comparisons of different GPC training techniques, and show how our method can be used for interpretability analysis. Our empirical analysis suggests that GPC robustness increases with more accurate posterior estimation.
引用
下载
收藏
页码:3372 / 3381
页数:10
相关论文
共 50 条
  • [21] Adversarial classification via distributional robustness with Wasserstein ambiguity
    Nam Ho-Nguyen
    Wright, Stephen J.
    MATHEMATICAL PROGRAMMING, 2023, 198 (02) : 1411 - 1447
  • [22] Edge enhancement improves adversarial robustness in image classification
    He, Lirong
    Ai, Qingzhong
    Lei, Yuqing
    Pan, Lili
    Ren, Yazhou
    Xu, Zenglin
    NEUROCOMPUTING, 2023, 518 : 122 - 132
  • [23] Impact of Attention on Adversarial Robustness of Image Classification Models
    Agrawal, Prachi
    Punn, Narinder Singh
    Sonbhadra, Sanjay Kumar
    Agarwal, Sonali
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3013 - 3019
  • [24] Skew Gaussian processes for classification
    Benavoli, Alessio
    Azzimonti, Dario
    Piga, Dario
    MACHINE LEARNING, 2020, 109 (9-10) : 1877 - 1902
  • [25] Skew Gaussian processes for classification
    Alessio Benavoli
    Dario Azzimonti
    Dario Piga
    Machine Learning, 2020, 109 : 1877 - 1902
  • [26] Bayesian classification with Gaussian processes
    Williams, CKI
    Barber, D
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (12) : 1342 - 1351
  • [27] Robustness Guarantees for Anonymity
    Barthe, Gilles
    Hevia, Alejandro
    Luo, Zhengqin
    Rezk, Tamara
    Warinschi, Bogdan
    2010 23RD IEEE COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF), 2010, : 91 - 106
  • [28] Multi-Class Triplet Loss With Gaussian Noise for Adversarial Robustness
    Appiah, Benjamin
    Baagyere, Edward Y.
    Owusu-Agyemang, Kwabena
    Qin, Zhiguang
    Abdullah, Muhammed Amin
    IEEE ACCESS, 2020, 8 : 171664 - 171671
  • [29] Adversarial Robustness by One Bit Double Quantization for Visual Classification
    Aprilpyone, Maungmaung
    Kinoshita, Yuma
    Kiya, Hitoshi
    IEEE ACCESS, 2019, 7 : 177932 - 177943
  • [30] Heteroscedastic Gaussian Processes and Random Features: Scalable Motion Primitives with Guarantees
    Caldarelli, Edoardo
    Chatalic, Antoine
    Colome, Adria
    Rosasco, Lorenzo
    Torras, Carme
    CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229