Nonlinear regression models with increasing numbers of unknown parameters

被引:3
|
作者
Hajiyev, A. H. [1 ]
Hajiyev, V. G. [2 ]
机构
[1] Azerbaijan Acad Sci, Inst Cybernet, Baku 370141, Azerbaijan
[2] Baku State Univ, AZ-1148 Baku, Azerbaijan
关键词
Covariance Matrix; Unknown Parameter; Error Variance; Iterative Procedure; Iteration Step;
D O I
10.1134/S1064562409030107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An approach for determining least squares estimators and covariance matrix elements is proposed to construct a confidence interval for the unknown function in nonlinear regression models with an increasing number of unknown parameters. The number of unknown parameters depend on the number of observations and a least square estimator is constructed by the iterative procedure. The minimum number of iteration steps are found, which is helpful in finding the asymptotic normality. A random variable is derived that is found to be the normal equation for the least squares estimator. The least squares estimators are used to construct an asymptotic confidence interval for the unknown function in nonlinear regression model.
引用
收藏
页码:339 / 341
页数:3
相关论文
共 50 条
  • [21] Adaptive tracking control of nonlinear systems with unknown time-varying parameters via a monotonically increasing function
    Liu, Guoqing
    Chen, Yang-Yang
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024, 34 (12) : 7746 - 7763
  • [22] On Variational Bayes for Identification of Nonlinear State-space Models with Linearly Dependent Unknown Parameters
    Taniguchi, Akihiro
    Fujimoto, Kenji
    Nishida, Yoshiharu
    2017 56TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2017, : 572 - 576
  • [23] Dynamic optimization of nonlinear systems with unknown parameters
    Fu J.
    Peng Y.
    Liu Y.-H.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (08): : 2223 - 2230
  • [24] Adaptive control of nonlinear systems with unknown parameters
    Qin, B
    Yang, YM
    Han, ZG
    INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, 1996, : 809 - 814
  • [25] Marginalized adaptive particle filtering for nonlinear models with unknown time-varying noise parameters
    Ozkan, Emre
    Smidl, Vaclav
    Saha, Saikat
    Lundquist, Christian
    Gustafsson, Fredrik
    AUTOMATICA, 2013, 49 (06) : 1566 - 1575
  • [26] CONTROL OF NONLINEAR ECONOMETRIC SYSTEMS WITH UNKNOWN PARAMETERS
    CHOW, GC
    ECONOMETRICA, 1976, 44 (04) : 685 - 695
  • [27] Regression Models for Time Series with Increasing Seasonality
    David Madrigal Espinoza, Sergio
    COMPUTACION Y SISTEMAS, 2014, 18 (04): : 821 - 831
  • [28] ESTIMATING REGRESSION-MODELS OF FINITE BUT UNKNOWN ORDER
    GEWEKE, J
    MEESE, R
    INTERNATIONAL ECONOMIC REVIEW, 1981, 22 (01) : 55 - 70
  • [29] Estimating regression models with unknown break-points
    Muggeo, VMR
    STATISTICS IN MEDICINE, 2003, 22 (19) : 3055 - 3071
  • [30] τ-estimators of regression models with structural change of unknown location
    Fiteni, I
    JOURNAL OF ECONOMETRICS, 2004, 119 (01) : 19 - 44