Edge-face chromatic number of 2-connected plane graphs with high maximum degree

被引:0
|
作者
Zhang Zhongfu [1 ]
Wang Weifan
Li Jingwen
Yao Bing
Bu Yuehua
机构
[1] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Inst Appl Math, Lanzhou 730070, Peoples R China
[3] ZheJiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[4] Lanzhou Jiaotong Univ, Sch Informat & Elect Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
plane graph; edge-face chromatic number; edge chromatic number; maximum degree;
D O I
10.1016/S0252-9602(06)60072-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The edge-face chromatic number chi (ef) (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, the authors prove that every 2-connected plane graph G with Delta(G) >= \G\ - 2 >= 9 has chi(ef) (G) = Delta(G).
引用
收藏
页码:477 / 482
页数:6
相关论文
共 50 条
  • [1] EDGE-FACE CHROMATIC NUMBER OF 2-CONNECTED PLANE GRAPHS WITH HIGH MAXIMUM DEGREE
    张忠辅
    王维凡
    李敬文
    姚兵
    卜月华
    ActaMathematicaScientia, 2006, (03) : 477 - 482
  • [2] Edge-face chromatic number and edge chromatic number of simple plane graphs
    Luo, R
    Zhang, CQ
    JOURNAL OF GRAPH THEORY, 2005, 49 (03) : 234 - 256
  • [3] An improved upper bound on the edge-face coloring of 2-connected plane graphs
    Liu, Juan
    Hu, Xiaoxue
    Kong, Jiangxu
    DISCRETE MATHEMATICS, 2024, 347 (12)
  • [4] Edge-face Chromatic Number of 2-connected 1-tree with △(G) = 5
    DONG Gui-xiang
    2. College of Information Science and Engineering
    3.School of Science
    数学季刊, 2004, (01) : 90 - 94
  • [5] Edge-Face Coloring of Plane Graphs with Maximum Degree Nine
    Sereni, Jean-Sebastien
    Stehlik, Matej
    JOURNAL OF GRAPH THEORY, 2011, 66 (04) : 332 - 346
  • [6] Plane graphs of maximum degree Δ ≥ 7 are edge-face (Δ+1)-colorable
    Wang, Yiqiao
    Hu, Xiaoxue
    Wang, Weifan
    Lih, Ko-Wei
    JOURNAL OF GRAPH THEORY, 2020, 95 (01) : 99 - 124
  • [7] The edge-face choosability of plane graphs with maximum degree at least 9
    Hu, Xiaoxue
    Wang, Weifan
    Wang, Yiqiao
    DISCRETE MATHEMATICS, 2014, 327 : 1 - 8
  • [8] EDGE-FACE TOTAL CHROMATIC NUMBER OF HALIN GRAPHS
    Chan, W. H.
    Lam, Peter C. B.
    Shiu, W. C.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1646 - 1654
  • [9] Edge-face chromatic number of Halin-graphs
    Zhang, ZF
    Lu, XZ
    Liu, LZ
    Wang, JF
    Gu, TX
    CHINESE SCIENCE BULLETIN, 1999, 44 (02): : 189 - 190
  • [10] Edge-face chromatic number of Halin-graphs
    ZHANG Zhongfu
    Institute of Applied Mathematics
    The Hefei Branch
    ChineseScienceBulletin, 1999, (02) : 189 - 190