A Cyclic Solution for an Infinite Class of Hamilton-Waterloo Problems

被引:14
|
作者
Buratti, Marco [1 ]
Danziger, Peter [2 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, Via Vanvitelli 1, I-06123 Perugia, Italy
[2] Ryerson Univ, Dept Math, 350 Victoria St, Toronto, ON M5B 2K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Two-factorization; Waterloo problem; Skolem sequence; Group action; COMPLETE GRAPH; 2-FACTORIZATIONS; SYSTEMS;
D O I
10.1007/s00373-015-1582-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result of this paper is the explicit construction, for any positive integer n, of a cyclic two-factorization of with two-factors consisting of five -cycles and each of the remaining two-factors consisting of all pentagons. Then, applying suitable composition constructions, we obtain a few other two-factorizations also having two-factors of two distinct types.
引用
收藏
页码:521 / 531
页数:11
相关论文
共 50 条
  • [41] A min-plus fundamental solution semigroup for a class of approximate infinite dimensional optimal control problems
    Dower, Peter M.
    McEneaney, William M.
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 794 - 799
  • [42] Maximal subsolutions for a class of degenerate Hamilton-Jacobi problems
    Camilli, F
    Siconolfi, A
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1999, 48 (03) : 1111 - 1131
  • [43] Numerical solution of problems of cyclic plasticity
    Babuska, I
    Li, Y
    IUTAM SYMPOSIUM ON DISCRETIZATION METHODS IN STRUCTURAL MECHANICS, 1999, 68 : 307 - 314
  • [44] Hamilton-Jacobi equations for infinite horizon control problems with state constraints
    Frankowska, H
    Plaskacz, S
    CALCULUS OF VARIATIONS AND OPTIMAL CONTROL, 2000, 411 : 97 - 116
  • [45] A class of 3-complexes with infinite cyclic fundamental group
    Bedenikovic, T
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2004, 13 (04) : 565 - 570
  • [46] ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE PROBLEMS
    Rasouli, S. H.
    Ghaemi, M. B.
    Afrouzi, G. A.
    Choubin, M.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 27 - 34
  • [47] On a class of second order infinite horizon variational problems
    Zaslavski, Alexander J.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (03): : 517 - 531
  • [48] A CLASS OF INFINITE DIMENSIONAL LINEAR-PROGRAMMING PROBLEMS
    PAPAGEORGIOU, NS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 87 (01) : 228 - 245
  • [49] On the existence of positive solutions for a class of infinite semipositone problems
    Rasouli, S.H.
    Ghaemi, M.B.
    Afrouzi, G.A.
    Choubin, M.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2014, 76 (04): : 27 - 34
  • [50] SOLUTION OF AN INFINITE-ORDER EQUATION IN UNIQUENESS CLASS
    FROLOV, YN
    DOKLADY AKADEMII NAUK SSSR, 1965, 161 (04): : 783 - &