Node duplication and routing algorithms for quantum-dot cellular automata circuits

被引:9
|
作者
Chung, W. J.
Smith, B.
Lim, S. K.
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
来源
关键词
D O I
10.1049/ip-cds:20050278
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum-dot cellular automata (QCA) is a novel computing mechanism that can represent binary information based on the spatial distribution of electron charge configuration in chemical molecules. QCA circuit layout is currently restricted to a single layer with very limited number of wire crossings permitted. Thus, wire crossing minimisation is crucial in improving the manufacturability of QCA circuits. We present the first QCA node duplication and routing algorithms for wire crossing minimisation. Our duplication algorithm named fan-out tolerance duplication (FTD) explores node duplication in conjunction with node placement using K-layered bipartite graphs (KLBG). FTD successfully removes additional crossings at the cost of increased area and allows flexible tradeoff between area and wire crossing. Our routing algorithm, namely cycle breaker (CB), constructs a modified vertical constraint graph (VCG) to enforce additional vertical relation for wire crossing reduction. We formulate and provide a heuristic solution for the weighted minimum feedback edge set problem to effectively remove cycles from the VCG. As a result, FTD and CB achieve wire crossing results that are very close to theoretical lower bound and outperform the conventional algorithms significantly.
引用
收藏
页码:497 / 505
页数:9
相关论文
共 50 条
  • [31] PLAs in Quantum-dot Cellular Automata
    Hu, Xiaobo Sharon
    Crocker, Michael
    Niemier, Michael
    Yan, Minjun
    Bernstein, Gary
    IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, PROCEEDINGS: EMERGING VLSI TECHNOLOGIES AND ARCHITECTURES, 2006, : 242 - +
  • [32] Quantum computing with quantum-dot cellular automata
    Toáth, G.
    Lent, C.S.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (05): : 523151 - 523159
  • [33] Quantum-Dot Cellular Automata Divider
    Krrabaj, Samedin
    Canhasi, Ercan
    Bajrami, Xhevahir
    2017 6TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2017, : 271 - 274
  • [34] Computer-Aided Design of Ternary Quantum-dot Cellular Automata Circuits
    Janez, Miha
    Bajec, Iztok Lebar
    Pecar, Primoz
    Jazbec, Andrej
    Zimic, Nikolaj
    Mraz, Miha
    PROCEEDINGS OF THE 12TH WSEAS INTERNATIONAL CONFERENCE ON CIRCUITS: NEW ASPECTS OF CIRCUITS, 2008, : 296 - +
  • [35] On the error effects of random clock shifts in Quantum-Dot Cellular Automata circuits
    Ottavi, M.
    Hashempour, H.
    Vankamamidi, V.
    Karim, F.
    Walus, K.
    Lvanov, A.
    DFT 2007: 22ND IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT-TOLERANCE IN VLSI SYSTEMS, PROCEEDINGS, 2007, : 487 - 495
  • [36] Circuits for the spectroscopic readout of bits from molecular quantum-dot cellular automata
    Cong, Peizhong
    Rocque, Alexander
    Blair, Enrique P.
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (13)
  • [37] Electric-Field Inputs for Molecular Quantum-Dot Cellular Automata Circuits
    Blair, Enrique
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2019, 18 : 453 - 460
  • [38] Asynchronous circuits design using quantum-dot cellular automata for molecular computing
    Aghababa, Hossein
    Jourabchian, Moitaba
    Forouzandeh, Behjat
    Afzali, Ali
    2008 MOSHARAKA INTERNATIONAL CONFERENCE ON COMMUNICATIONS, PROPAGATION AND ELECTRONICS, 2008, : 13 - 16
  • [39] Design and Simulation of Efficient Code Converter Circuits for Quantum-Dot Cellular Automata
    Beigh, M. R.
    Mustafa, M.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2014, 11 (12) : 2564 - 2569
  • [40] Quantum-dot Cellular Automata circuits using an efficient design and performance analysis
    Gade, Mary Swarna Latha
    Rooban, S.
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 48