Node duplication and routing algorithms for quantum-dot cellular automata circuits

被引:9
|
作者
Chung, W. J.
Smith, B.
Lim, S. K.
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
来源
关键词
D O I
10.1049/ip-cds:20050278
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum-dot cellular automata (QCA) is a novel computing mechanism that can represent binary information based on the spatial distribution of electron charge configuration in chemical molecules. QCA circuit layout is currently restricted to a single layer with very limited number of wire crossings permitted. Thus, wire crossing minimisation is crucial in improving the manufacturability of QCA circuits. We present the first QCA node duplication and routing algorithms for wire crossing minimisation. Our duplication algorithm named fan-out tolerance duplication (FTD) explores node duplication in conjunction with node placement using K-layered bipartite graphs (KLBG). FTD successfully removes additional crossings at the cost of increased area and allows flexible tradeoff between area and wire crossing. Our routing algorithm, namely cycle breaker (CB), constructs a modified vertical constraint graph (VCG) to enforce additional vertical relation for wire crossing reduction. We formulate and provide a heuristic solution for the weighted minimum feedback edge set problem to effectively remove cycles from the VCG. As a result, FTD and CB achieve wire crossing results that are very close to theoretical lower bound and outperform the conventional algorithms significantly.
引用
收藏
页码:497 / 505
页数:9
相关论文
共 50 条
  • [21] Accurate reliability analysis method for quantum-dot cellular automata circuits
    Cui, Huanqing
    Cai, Li
    Wang, Sen
    Liu, Xiaoqiang
    Yang, Xiaokuo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2015, 29 (29):
  • [22] Electric field measurement for quantum-dot cellular automata clocking circuits
    Yan, Minjun
    SURFACE AND INTERFACE ANALYSIS, 2008, 40 (12) : 1503 - 1506
  • [23] Novel Asynchronous Registers for Sequential Circuits with Quantum-Dot Cellular Automata
    Katti, Raj
    Shrestha, Sarjan
    2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012, : 1351 - 1354
  • [24] Signal Synchronization in Large Scale Quantum-dot Cellular Automata Circuits
    Mardiris, Vassilios A.
    Liolis, Orestis
    Sirakoulis, Georgios Ch.
    Karafyllidis, Ioannis G.
    NANOARCH'18: PROCEEDINGS OF THE 14TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES, 2018, : 153 - 156
  • [25] Molecular quantum-dot cellular automata
    Isaksen, B
    Lent, CS
    2003 THIRD IEEE CONFERENCE ON NANOTECHNOLOGY, VOLS ONE AND TWO, PROCEEDINGS, 2003, : 5 - 8
  • [26] Molecular quantum-dot cellular automata
    Lent, CS
    Isaksen, B
    Lieberman, M
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (04) : 1056 - 1063
  • [27] Implementations of Quantum-dot Cellular Automata
    Snider, Gregory
    Orlov, Alexei
    Lent, Craig
    Bernstein, Gary
    Lieberman, Marya
    Fehlner, Thomas
    2006 INTERNATIONAL CONFERENCE ON NANOSCIENCE AND NANOTECHNOLOGY, VOLS 1 AND 2, 2006, : 631 - +
  • [28] Quantum-dot cellular automata adders
    Wang, W
    Walus, K
    Jullien, GA
    2003 THIRD IEEE CONFERENCE ON NANOTECHNOLOGY, VOLS ONE AND TWO, PROCEEDINGS, 2003, : 461 - 464
  • [29] PLAs in quantum-dot cellular automata
    Crocker, Michael
    Hu, Xiaobo Sharon
    Niemier, Michael
    Yan, Minjun
    Bernstein, Gary
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (03) : 376 - 386
  • [30] Electronic Quantum-dot Cellular Automata
    Snider, Gregory L.
    Orlov, Alexei O.
    Joshi, Vishwanath
    Joyce, Robin A.
    Qi, Hua
    Yadavalli, Kameshwar K.
    Bernstein, Gary H.
    Fehlner, Thomas P.
    Lent, Craig S.
    2008 9TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED-CIRCUIT TECHNOLOGY, VOLS 1-4, 2008, : 549 - 552