Simulation of EAST quasi-snowflake discharge by tokamak simulation code

被引:7
|
作者
Guo, Y. [1 ]
Pironti, A. [2 ,3 ]
Liu, L. [1 ]
Xiao, B. J. [1 ,4 ]
Albanese, R. [2 ,3 ]
Ambrosino, R. [2 ,3 ]
Luo, Z. P. [1 ]
Yuan, Q. P. [1 ]
Calabro, G. [5 ]
Crisanti, F. [5 ]
Xing, Z. [1 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Univ Cassino, Univ Naples Federico II, CREATE, I-80125 Naples, Italy
[3] Univ Napoli Parthenope, I-80125 Naples, Italy
[4] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Peoples R China
[5] CR Frascati, ENEA UnitaTecn Fus, I-00044 Rome, Italy
基金
中国国家自然科学基金;
关键词
Quasi-Snowflake; Singular value decomposition method; EAST; Tokamak discharge simulation; RECONSTRUCTION;
D O I
10.1016/j.fusengdes.2015.10.010
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Both theory and experiment have proved Snowflake configuration could reduce the heat loads on divertor plate. Due to limitation of PF coils, EAST could only operate with quasi-snowflake (QSF). In 2014 EAST campaign, QSF has been achieved by RZIp control. The next important task is the QSF shape control. As tokamak discharge simulation code, Tokamak Simulation Code (TSC), which has been benchmarked by experimental data, is used to simulate EAST QSF discharge. Singular Value Decomposition (SVD) method, a way to decouple the PP current and control parameter, is implemented in TSC code to simulate the course of QSF shape control. The simulation results show SVD method is a good way for EAST QSF shape control. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
  • [41] Simulation of dynamic characteristics for ELM filaments on EAST tokamak using BOUT plus
    Wu, Y. B.
    Xia, T. Y.
    Zhong, F. C.
    AIP ADVANCES, 2020, 10 (05)
  • [42] Numerical simulation of an inductively coupled discharge using an Eulerian Vlasov code
    Shoucri, M
    Matte, JP
    Côté, A
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (17) : 2083 - 2088
  • [43] Snowflake Melting Simulation Using Smoothed Particle Hydrodynamics
    Leinonen, Jussi
    von Lerber, Annakaisa
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (03) : 1811 - 1825
  • [44] Why Perform Code-to-Code Comparisons: A Vacuum Arc Discharge Simulation Case Study
    Timko, H.
    Crozier, P. S.
    Hopkins, M. M.
    Matyash, K.
    Schneider, R.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2012, 52 (04) : 295 - 308
  • [45] Simulation of current density profile for EAST advanced scenario with METIS code
    Tao, Y.
    Li, M. H.
    Qian, J. P.
    Moreau, D.
    Zhang, B.
    Xu, H. D.
    Xu, W. Y.
    Li, P.
    Yang, X. D.
    Liu, W. B.
    Jia, T. Q.
    Hu, Y. C.
    He, Y. F.
    FUSION ENGINEERING AND DESIGN, 2024, 200
  • [46] DISCHARGE SIMULATION
    DAVIES, AJ
    IEE PROCEEDINGS-A-SCIENCE MEASUREMENT AND TECHNOLOGY, 1986, 133 (04): : 217 - 240
  • [47] WATERBAG METHODS IN SIMULATION OF TOKAMAK
    POTTER, D
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (09): : 931 - 931
  • [48] SIMULATION OF TOKAMAK IGNITION REACTORS
    WAGNER, CE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1187 - 1188
  • [49] Gyrokinetic Simulation of Turbulence in the High-βN Discharge on the Experimental Advanced Superconducting Tokamak
    Zheng, S. Y.
    Zhang, D. B.
    Xue, E. B.
    Yu, L. M.
    Zhang, X. M.
    Gao, X.
    Huang, J.
    Xiao, Y.
    Ding, S. Y.
    Liu, H. Q.
    Zang, Q.
    Lv, B.
    Li, Y. Y.
    Zhang, T.
    Ding, B. J.
    Wu, M. Q.
    PLASMA PHYSICS REPORTS, 2020, 46 (12) : 1137 - 1143
  • [50] Gyrokinetic Simulation of Turbulence in the High-βN Discharge on the Experimental Advanced Superconducting Tokamak
    S. Y. Zheng
    D. B. Zhang
    E. B. Xue
    L. M. Yu
    X. M. Zhang
    X. Gao
    J. Huang
    Y. Xiao
    S. Y. Ding
    H. Q. Liu
    Q. Zang
    B. Lv
    Y. Y. Li
    T. Zhang
    B. J. Ding
    M. Q. Wu
    EAST Team
    Plasma Physics Reports, 2020, 46 : 1137 - 1143