Simulation of EAST quasi-snowflake discharge by tokamak simulation code

被引:7
|
作者
Guo, Y. [1 ]
Pironti, A. [2 ,3 ]
Liu, L. [1 ]
Xiao, B. J. [1 ,4 ]
Albanese, R. [2 ,3 ]
Ambrosino, R. [2 ,3 ]
Luo, Z. P. [1 ]
Yuan, Q. P. [1 ]
Calabro, G. [5 ]
Crisanti, F. [5 ]
Xing, Z. [1 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Univ Cassino, Univ Naples Federico II, CREATE, I-80125 Naples, Italy
[3] Univ Napoli Parthenope, I-80125 Naples, Italy
[4] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Peoples R China
[5] CR Frascati, ENEA UnitaTecn Fus, I-00044 Rome, Italy
基金
中国国家自然科学基金;
关键词
Quasi-Snowflake; Singular value decomposition method; EAST; Tokamak discharge simulation; RECONSTRUCTION;
D O I
10.1016/j.fusengdes.2015.10.010
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Both theory and experiment have proved Snowflake configuration could reduce the heat loads on divertor plate. Due to limitation of PF coils, EAST could only operate with quasi-snowflake (QSF). In 2014 EAST campaign, QSF has been achieved by RZIp control. The next important task is the QSF shape control. As tokamak discharge simulation code, Tokamak Simulation Code (TSC), which has been benchmarked by experimental data, is used to simulate EAST QSF discharge. Singular Value Decomposition (SVD) method, a way to decouple the PP current and control parameter, is implemented in TSC code to simulate the course of QSF shape control. The simulation results show SVD method is a good way for EAST QSF shape control. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
  • [31] Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST
    Xu, X. Q.
    PHYSICAL REVIEW E, 2008, 78 (01):
  • [32] Transport Simulation of PLATO Tokamak Plasma Using Integrated Code TASK
    Mochinaga, Shota
    Kasuya, Naohiro
    Fukuyama, Atsushi
    Nagashima, Yoshihiko
    Fujisawa, Akihide
    PLASMA AND FUSION RESEARCH, 2021, 16 : 1 - 6
  • [33] Modeling snowflake divertors in MAST-U tokamak using UEDGE code
    Khrabry, A., I
    Soukhanovskii, V. A.
    Rognlien, T. D.
    Umansky, M., V
    Moulton, D.
    Harrison, J. R.
    NUCLEAR MATERIALS AND ENERGY, 2021, 26
  • [34] Modelling of First Discharge in EAST Tokamak
    刘成岳
    吴斌
    肖炳甲
    舒双宝
    Plasma Science and Technology, 2008, (01) : 8 - 12
  • [35] Modelling of first discharge in EAST tokamak
    Liu Chengyue
    Wu Bin
    Xiao Bingjia
    Shu Shuangbao
    PLASMA SCIENCE & TECHNOLOGY, 2008, 10 (01) : 8 - 12
  • [36] Modelling of First Discharge in EAST Tokamak
    刘成岳
    吴斌
    肖炳甲
    舒双宝
    Plasma Science and Technology, 2008, 10 (01) : 8 - 12
  • [37] EAST discharge prediction without integrating simulation results
    Wan, Chenguang
    Yu, Zhi
    Pau, Alessandro
    Liu, Xiaojuan
    Li, Jiangang
    NUCLEAR FUSION, 2022, 62 (12)
  • [38] Simulation of hot VDE disruption in EAST by using the TSC code
    Qiu, Qinglai
    Guo, Y.
    Gao, Xiang
    Huang, Jianjun
    Sun, Huibin
    Li, Jiangang
    Xiao, Bingjia
    Chen, Dalong
    Luo, Zhengping
    FUSION ENGINEERING AND DESIGN, 2020, 150 (150)
  • [39] Full tokamak discharge simulation of ITER by combining DINA-CH and CRONOS
    Kim, S. H.
    Artaud, J. F.
    Basiuk, V.
    Dokuka, V.
    Khayrutdinov, R. R.
    Lister, J. B.
    Lukash, V. E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (10)
  • [40] Simulation of the multi-channel motional Stark effect diagnostic on EAST Tokamak
    Yu, Qingjiang
    Fu, Jia
    Liao, Ken
    Li, Yichao
    Chen, Dong
    Li, Yingying
    Rowan, William
    Huang, He
    Zhang, Hongming
    Wang, Fudi
    Wu, Zhenwei
    Wan, Baonian
    Ye, Minyou
    Lyu, Bo
    FUSION ENGINEERING AND DESIGN, 2020, 153