Simulation of EAST quasi-snowflake discharge by tokamak simulation code

被引:7
|
作者
Guo, Y. [1 ]
Pironti, A. [2 ,3 ]
Liu, L. [1 ]
Xiao, B. J. [1 ,4 ]
Albanese, R. [2 ,3 ]
Ambrosino, R. [2 ,3 ]
Luo, Z. P. [1 ]
Yuan, Q. P. [1 ]
Calabro, G. [5 ]
Crisanti, F. [5 ]
Xing, Z. [1 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Univ Cassino, Univ Naples Federico II, CREATE, I-80125 Naples, Italy
[3] Univ Napoli Parthenope, I-80125 Naples, Italy
[4] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Peoples R China
[5] CR Frascati, ENEA UnitaTecn Fus, I-00044 Rome, Italy
基金
中国国家自然科学基金;
关键词
Quasi-Snowflake; Singular value decomposition method; EAST; Tokamak discharge simulation; RECONSTRUCTION;
D O I
10.1016/j.fusengdes.2015.10.010
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Both theory and experiment have proved Snowflake configuration could reduce the heat loads on divertor plate. Due to limitation of PF coils, EAST could only operate with quasi-snowflake (QSF). In 2014 EAST campaign, QSF has been achieved by RZIp control. The next important task is the QSF shape control. As tokamak discharge simulation code, Tokamak Simulation Code (TSC), which has been benchmarked by experimental data, is used to simulate EAST QSF discharge. Singular Value Decomposition (SVD) method, a way to decouple the PP current and control parameter, is implemented in TSC code to simulate the course of QSF shape control. The simulation results show SVD method is a good way for EAST QSF shape control. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
  • [1] Preliminary 2D code simulation of the quasi-snowflake divertor configuration in the FAST tokamak
    Ridolfini, V. Pericoli
    Zagorski, R.
    Artaserse, G.
    Calabro, G.
    Crisanti, F.
    Maddaluno, G.
    Ramogida, G.
    Viola, B.
    FUSION ENGINEERING AND DESIGN, 2013, 88 (9-10) : 1677 - 1681
  • [2] The simulation of the application of quasi-snowflake magnetic configuration on the EAST new lower tungsten divertor
    Zhang, Chen
    Sang, Chaofeng
    Wang, Liang
    Luo, Zhengping
    Xu, Guosheng
    Liu, Daoyuan
    Wang, Dezhen
    FUSION ENGINEERING AND DESIGN, 2020, 158
  • [3] Simulation study of the impurity radiation in the quasi-snowflake divertor with Ar seeding for CFETR
    Ye, M. Y.
    Zhou, Y. F.
    Mao, S. F.
    Luo, Z. P.
    NUCLEAR FUSION, 2019, 59 (09)
  • [4] Experimental advanced superconducting tokamak ohmic discharge simulation by the tokamak simulation code
    Guo, Yong
    Xiao, Bingjia
    Wu, Bin
    Liu, Chengyue
    PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (08)
  • [5] Simulation of EAST vertical displacement events by tokamak simulation code
    Qiu, Qinglai
    Xiao, Bingjia
    Guo, Yong
    Liu, Lei
    Xing, Zhe
    Humphreys, D. A.
    NUCLEAR FUSION, 2016, 56 (10)
  • [6] Numerical simulation of ohmic discharge in the EAST tokamak
    Liu, Cheng-Yue
    Xiao, Bing-Jia
    Wu, Bin
    Liu, Lian-Zhong
    Luo, Zheng-Ping
    Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2007, 27 (04): : 280 - 285
  • [7] Preliminary Comparison of the Conventional and Quasi-Snowflake Divertor Configurations with the 2D Code EDGE2D/EIRENE in the FAST Tokamak
    Viola, B.
    Corrigan, G.
    Harting, D.
    Maddaluno, G.
    Mattia, M.
    Ridolfini, V. Pericoli
    Zagorski, R.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2014, 54 (4-6) : 459 - 463
  • [8] Optimization of Magnetic Confinement for Quasi-Snowflake Divertor Configuration
    Tang, Y. Z.
    Bao, X. H.
    Gao, G.
    Chen, Y. Y.
    JETP LETTERS, 2019, 110 (04) : 254 - 261
  • [9] Optimization of Magnetic Confinement for Quasi-Snowflake Divertor Configuration
    Y. Z. Tang
    X. H. Bao
    G. Gao
    Y. Y. Chen
    JETP Letters, 2019, 110 : 254 - 261
  • [10] Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink
    Wang, Sen
    Yuan, Qiping
    Xiao, Bingjia
    PLASMA SCIENCE & TECHNOLOGY, 2017, 19 (03)