TRANSPORT PHENOMENA IN BIOLOGICAL FIELD EFFECT TRANSISTORS

被引:0
|
作者
Evans, Ryan M. [1 ]
Balijepalli, Arvind [2 ]
Kearsley, Anthony J. [1 ]
机构
[1] NIST, Informat Technol Lab, Appl & Computat Math Div, Gaithersburg, MD 20899 USA
[2] NIST, Phys Measurement Lab, Microsyst & Nanotechnol Div, Gaithersburg, MD 20899 USA
关键词
biological field effect transistor; integrodifferential equation; method of lines; stochastic regression; parameter estimation; RATE CONSTANTS;
D O I
10.1137/19M1255495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mathematical model for simulating biological field effect transistor (Bio-FET) experiments is introduced. It takes the form of a nonlinear equation that describes evolution of reacting species concentration at the boundary coupled to a diffusion equation. Using analytic techniques, this coupled system of equations is reduced to a singular integrodifferential equation (IDE). A numerical approximation of this equation is developed that achieves greater than first-order accuracy in time and greater than second-order accuracy in space, despite the presence of a singular temporal convolution kernel and a discontinuous boundary condition. The mathematical model was validated using Bio-FET data, and stochastic regression was employed to separate signal from noise. Results show that our IDE provides a robust way of estimating important parameters such as diffusion coefficients and kinetic rate constants.
引用
收藏
页码:2586 / 2607
页数:22
相关论文
共 50 条
  • [21] Transition from bulk transport to surface transport in organic field effect transistors
    Koehler, M.
    Seidel, K. F.
    PHYSICAL REVIEW B, 2010, 81 (08):
  • [22] Current transport modeling of carbon nanotube field effect transistors
    Srivastava, Ashok
    Marulanda, Jose M.
    Xu, Yao
    Sharma, Ashwani K.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (07): : 1569 - 1578
  • [23] Charge transport in disordered organic field-effect transistors
    Tanase, C
    Blom, PWM
    Meijer, EJ
    de Leeuw, DM
    ORGANIC AND POLYMERIC MATERIALS AND DEVICES-OPTICAL, ELECTRICAL AND OPTOELECTRONIC PROPERTIES, 2002, 725 : 125 - 129
  • [24] Ambipolar charge transport in organic field-effect transistors
    Smits, Edsger C. P.
    Anthopoulos, Thomas D.
    Setayesh, Sepas
    van Veenendaal, Erik
    Coehoorn, Reinder
    Blom, Paul W. M.
    de Boer, Bert
    de Leeuw, Dago M.
    PHYSICAL REVIEW B, 2006, 73 (20)
  • [25] Electrical transport properties and field effect transistors of carbon nanotubes
    Dai, Hongjie
    Javey, Ali
    Pop, Eric
    Mann, David
    Kim, Woong
    Lu, Yuerui
    NANO, 2006, 1 (01) : 1 - 13
  • [26] Simulation of carrier transport in carbon nanotube field effect transistors
    Ungersböck, E
    Gehring, A
    Kosina, H
    Selberherr, S
    Cheong, BH
    Choi, WB
    ESSDERC 2003: PROCEEDINGS OF THE 33RD EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2003, : 411 - 414
  • [27] Numerical Modelling of Carrier Transport in Organic Field Effect Transistors
    Hussien, Salma
    Abdellatif, Sameh
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2024, 17 (09) : 865 - 876
  • [28] Issues with characterizing transport properties of graphene field effect transistors
    Venugopal, Archana
    Colombo, Luigi
    Vogel, Eric M.
    SOLID STATE COMMUNICATIONS, 2012, 152 (15) : 1311 - 1316
  • [29] Electron and ambipolar transport in organic field-effect transistors
    Zaumseil, Jana
    Sirringhaus, Henning
    CHEMICAL REVIEWS, 2007, 107 (04) : 1296 - 1323
  • [30] Charge transport in polycrystalline organic field-effect transistors
    Horowitz, G
    POLYCRYSTALLINE SEMICONDUCTORS IV MATERIALS, TECHNOLOGIES AND LARGE AREA ELECTRONICS, 2001, 80-81 : 3 - 13