Fractal energy carpets in non-Hermitian Hofstadter quantum mechanics

被引:7
|
作者
Chernodub, Maxim N. [1 ,2 ,3 ]
Ouvry, Stephane [4 ]
机构
[1] Univ Tours, CNRS, Lab Math & Phys Theor, UMR 7350, F-37200 Tours, France
[2] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium
[3] Far Eastern Fed Univ, Soft Matter Phys Lab, Vladivostok 690950, Russia
[4] Univ Paris 11, CNRS, UMR 8626, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 04期
关键词
Energy spectra - Hausdorff dimension - Hermitians - Quantum particles - Quasimomentum - Space-filling curve - Spider web - Square lattices;
D O I
10.1103/PhysRevE.92.042102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the non-Hermitian Hofstadter dynamics of a quantum particle with biased motion on a square lattice in the background of a magnetic field. We show that in quasimomentum space, the energy spectrum is an overlap of infinitely many inequivalent fractals. The energy levels in each fractal are space-filling curves with Hausdorff dimension 2. The band structure of the spectrum is similar to a fractal spider web in contrast to the Hofstadter butterfly for unbiased motion.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Entanglement and Purification Transitions in Non-Hermitian Quantum Mechanics
    Gopalakrishnan, Sarang
    Gullans, Michael J.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (17)
  • [32] Non-hermitian quantum mechanics in non-commutative space
    Pulak Ranjan Giri
    P. Roy
    [J]. The European Physical Journal C, 2009, 60 : 157 - 161
  • [33] Non-Hermitian Hamiltonians with Real Spectrum in Quantum Mechanics
    da Providencia, J.
    Bebiano, N.
    da Providencia, J. P.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2011, 41 (01) : 78 - 85
  • [34] Optical Realization of Relativistic Non-Hermitian Quantum Mechanics
    Longhi, Stefano
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (01)
  • [35] Random Dirac fermions and non-Hermitian quantum mechanics
    Mudry, C
    Simons, BD
    Altland, A
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (19) : 4257 - 4260
  • [36] Non-Hermitian quantum mechanics: Wave packet propagation on autoionizing potential energy surfaces
    Moiseyev, N
    Scheit, S
    Cederbaum, LS
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (02): : 722 - 725
  • [37] Features, Paradoxes and Amendments of Perturbative Non-Hermitian Quantum Mechanics
    Znojil, Miloslav
    [J]. SYMMETRY-BASEL, 2024, 16 (05):
  • [38] Non-Hermitian quantum mechanics and exceptional points in molecular electronics
    Ernzerhof, Matthias
    Giguere, Alexandre
    Mayou, Didier
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (24):
  • [39] Dynamics of Ion Channels via Non-Hermitian Quantum Mechanics
    Gulden, Tobias
    Kamenev, Alex
    [J]. ENTROPY, 2021, 23 (01) : 1 - 25
  • [40] Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems
    Bagchi, Bijan
    Fring, Andreas
    [J]. PHYSICS LETTERS A, 2009, 373 (47) : 4307 - 4310