Features, Paradoxes and Amendments of Perturbative Non-Hermitian Quantum Mechanics

被引:0
|
作者
Znojil, Miloslav [1 ,2 ,3 ]
机构
[1] Czech Acad Sci, Nucl Phys Inst, Hlavni 130, Rez 25068, Czech Republic
[2] Univ Hradec Kralove, Fac Sci, Dept Phys, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
[3] Durban Univ Technol, Inst Syst Sci, ZA-4001 Durban, South Africa
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 05期
关键词
unitary quantum mechanics; non-Hermitian Schr & ouml; dinger picture; generalized perturbation theory; ambiguity of physical Hilbert space; REPRESENTATION; OSCILLATORS; EIGENVALUES; OPERATORS;
D O I
10.3390/sym16050629
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum mechanics of unitary systems is considered in quasi-Hermitian representation and in the dynamical regime in which one has to take into account the ubiquitous presence of perturbations, random or specific. In this paper, it is shown that multiple technical obstacles encountered in such a context can be circumvented via just a mild amendment of the so-called Rayleigh-Schr & ouml;dinger perturbation-expansion approach. In particular, the quasi-Hermitian formalism characterized by an enhancement of flexibility is shown to remain mathematically tractable while, on the phenomenological side, opening several new model-building horizons. It is emphasized that they include, i.a., the study of generic random perturbations and/or of multiple specific non-Hermitian toy models. In parallel, several paradoxes and open questions are shown to survive.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Relativistic non-Hermitian quantum mechanics
    Jones-Smith, Katherine
    Mathur, Harsh
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [2] Pseudospectra in non-Hermitian quantum mechanics
    Krejcirik, D.
    Siegl, P.
    Tater, M.
    Viola, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [3] Non-Hermitian noncommutative quantum mechanics
    J. F. G. dos Santos
    F. S. Luiz
    O. S. Duarte
    M. H. Y. Moussa
    The European Physical Journal Plus, 134
  • [4] Editorial: Non-Hermitian quantum mechanics
    Hatano, Naomichi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (12):
  • [5] Non-Hermitian noncommutative quantum mechanics
    dos Santos, J. F. G.
    Luiz, F. S.
    Duarte, O. S.
    Moussa, M. H. Y.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (07):
  • [6] New scattering features in non-Hermitian space fractional quantum mechanics
    Hasan, Mohammad
    Mandal, Bhabani Prasad
    ANNALS OF PHYSICS, 2018, 396 : 371 - 385
  • [7] Localization, Resonance, and Non-Hermitian Quantum Mechanics
    Hatano, Naomichi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72
  • [8] Statistical mechanics for non-Hermitian quantum systems
    Cao, Kui
    Kou, Su-Peng
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [9] CONFORMAL ANOMALY IN NON-HERMITIAN QUANTUM MECHANICS
    Giri, Pulak Ranjan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (01): : 155 - 161
  • [10] Matrix Algebras in Non-Hermitian Quantum Mechanics
    Sergi, Alessandro
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (01) : 96 - 98