Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions

被引:0
|
作者
Cecil, T [1 ]
Qian, JL [1 ]
Osher, S [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jcp.2003.11.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We utilize radial basis functions (RBFs) to construct numerical schemes for Hamilton-Jacobi (HJ) equations on unstructured data sets in arbitrary dimensions. The computational setup is a meshless discretization of the physical domain. We derive monotone schemes on unstructured data sets to compute the viscosity solutions. The essentially nonoscillatory (ENO) mechanism is combined with radial basis function reconstruction to obtain high order schemes in the presence of gradient discontinuities. Numerical examples of time dependent HJ equations in 2, 3 and 4 dimensions illustrate the accuracy of the new methods. (C) 2003 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:327 / 347
页数:21
相关论文
共 50 条
  • [41] High-order schemes for multi-dimensional Hamilton-Jacobi equations
    Bryson, S
    Levy, D
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2003, : 387 - 396
  • [42] On Convex Finite-Dimensional Variational Methods in Imaging Sciences and Hamilton-Jacobi Equations
    Darbon, Jerome
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04): : 2268 - 2293
  • [43] Hamilton-Jacobi equations having only action functions as solutions
    Thomas Strömberg
    Archiv der Mathematik, 2004, 83 : 437 - 449
  • [44] Hamilton-Jacobi equations having only action functions as solutions
    Strömberg, T
    ARCHIV DER MATHEMATIK, 2004, 83 (05) : 437 - 449
  • [45] NUMERICAL SCHEMES FOR CONSERVATION LAWS VIA HAMILTON-JACOBI EQUATIONS
    CORRIAS, L
    FALCONE, M
    NATALINI, R
    MATHEMATICS OF COMPUTATION, 1995, 64 (210) : 555 - 580
  • [46] Stabilization of forming processes using multi-dimensional Hamilton-Jacobi equations
    Bambach, Markus
    Gugat, Martin
    Herty, Michael
    Thein, Ferdinand
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 7376 - 7381
  • [47] On the numerical approximation of first-order Hamilton-Jacobi equations
    Abgrall, Remi
    Perrier, Vincent
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2007, 17 (03) : 403 - 412
  • [49] Numerical results for a product formula approximation of Hamilton-Jacobi equations
    Arnautu, V
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1995, 57 (1-2) : 75 - 82
  • [50] An efficient algorithm for Hamilton-Jacobi equations in high dimension
    Carlini, Elisabetta
    Falcone, Maurizio
    Ferretti, Roberto
    Comput. Visual. Sci., 1600, 1 (15-29):