Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions

被引:0
|
作者
Cecil, T [1 ]
Qian, JL [1 ]
Osher, S [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jcp.2003.11.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We utilize radial basis functions (RBFs) to construct numerical schemes for Hamilton-Jacobi (HJ) equations on unstructured data sets in arbitrary dimensions. The computational setup is a meshless discretization of the physical domain. We derive monotone schemes on unstructured data sets to compute the viscosity solutions. The essentially nonoscillatory (ENO) mechanism is combined with radial basis function reconstruction to obtain high order schemes in the presence of gradient discontinuities. Numerical examples of time dependent HJ equations in 2, 3 and 4 dimensions illustrate the accuracy of the new methods. (C) 2003 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:327 / 347
页数:21
相关论文
共 50 条