Parameter estimation using Kalman filters with constraints

被引:26
|
作者
Walker, David M. [1 ]
机构
[1] Biomath & Stat Scotland, Macaulay Inst, Aberdeen AB15 8QH, Scotland
来源
关键词
Kalman filter; nonlinear systems; parameter fitting; unstable fixed points;
D O I
10.1142/S0218127406015325
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We suggest incorporating dynamical information such as locations of unstable fixed points into parameter estimation algorithms in order to improve the method of reconstructing dynamics from time series data. We show how the process of reconstruction using nonlinear filters such as the extended Kalman filter can be easily modified to take advantage of the additional information. We demonstrate the methods using data from two systems exhibiting chaotic dynamics - the Chua circuit and Chen's equations. In both cases we find the models reconstructed using constraints that better approximate the unstable fixed point structure of the underlying systems.
引用
收藏
页码:1067 / 1078
页数:12
相关论文
共 50 条
  • [21] Using the Kalman filter for parameter estimation in biogeochemical models
    Trudinger, C. M.
    Raupach, M. R.
    Rayner, P. J.
    Enting, I. G.
    ENVIRONMETRICS, 2008, 19 (08) : 849 - 870
  • [22] Modal parameter estimation using interacting Kalman filter
    Zghal, Meriem
    Mevel, Laurent
    Del Moral, Pierre
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2014, 47 (1-2) : 139 - 150
  • [23] Parameter estimation for multipath error in GPS dual frequency carrier phase measurements using unscented Kalman filters
    Lee, Eunsung
    Chun, Sebum
    Lee, Young Jae
    Kang, Teasam
    Jee, Gyu-In
    Kim, Jeongrae
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2007, 5 (04) : 388 - 396
  • [24] Vehicle Inertial Parameter Identification using Extended and Unscented Kalman Filters
    Hong, Sanghyun
    Smith, Tory
    Borrelli, Francesco
    Hedrick, J. Karl
    2013 16TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS - (ITSC), 2013, : 1436 - 1441
  • [25] Relative target estimation using a cascade of extended Kalman filters
    Nielsen, Jerel
    Beard, Randal W.
    PROCEEDINGS OF THE 30TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2017), 2017, : 2273 - 2289
  • [26] Constrained Nonlinear State Estimation Using Ensemble Kalman Filters
    Prakash, J.
    Patwardhan, Sachin C.
    Shah, Sirish L.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (05) : 2242 - 2253
  • [27] Using sequential Kalman filters for state estimation of nonlinear systems
    Mohammadi, S.
    Mohammadi, A.
    Keivani, H.
    Askari, M. R.
    Kavehnia, F.
    Ghanbarian, M. M.
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 258 - +
  • [28] Dynamic State Estimation in Power Systems Using Kalman Filters
    Tebianian, Hamed
    Jeyasurya, Benjamin
    2013 IEEE ELECTRICAL POWER & ENERGY CONFERENCE (EPEC), 2013,
  • [29] Spectral abundance fraction estimation of materials using Kalman filters
    Wang, S
    Chang, CI
    Jensen, JL
    Jensen, JO
    CHEMICAL AND BIOLOGICAL STANDOFF DETECTION II, 2004, 5584 : 210 - 220
  • [30] Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography
    Schoeniger, A.
    Nowak, W.
    Franssen, H-J Hendricks
    WATER RESOURCES RESEARCH, 2012, 48