Dynamic State Estimation in Power Systems Using Kalman Filters

被引:0
|
作者
Tebianian, Hamed [1 ]
Jeyasurya, Benjamin [1 ]
机构
[1] Mem Univ Newfoundland, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada
关键词
Power system state estimation; Extended Kalman Filter; Unscented Kalman Filter;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Dynamic state estimation of power systems is necessary for wide area control purposes. Among the states of synchronous machine, precise, accurate, and timely information about rotor angle and speed deviation can be useful to enhance power system reliability and stability. In this paper two popular nonlinear estimation approaches: Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are used to estimate main states of a simple power system using high rate data provided by Phasor Measurement Unit (PMU). A case study using a simple power system model is presented to illustrate the effectiveness of proposed approaches.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Using sequential Kalman filters for state estimation of nonlinear systems
    Mohammadi, S.
    Mohammadi, A.
    Keivani, H.
    Askari, M. R.
    Kavehnia, F.
    Ghanbarian, M. M.
    [J]. PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 258 - +
  • [2] The extended Kalman filter in the dynamic state estimation of electrical power systems
    Cevallos, Holger
    Intriago, Gabriel
    Plaza, Douglas
    Idrovo, Roger
    [J]. ENFOQUE UTE, 2018, 9 (04): : 120 - 130
  • [3] A Comparative Study of Bayesian based filters for Dynamic State Estimation in Power Systems
    Banu, Sofia
    Johnson, Teena
    Moger, Tukaram
    [J]. 2021 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE (IPRECON), 2021,
  • [4] Power System State Estimation Comparison of Kalman Filters with A New Approach
    Khandelwal, Arpit
    Tondan, Ankush
    [J]. 2016 7TH INDIA INTERNATIONAL CONFERENCE ON POWER ELECTRONICS (IICPE), 2016,
  • [5] Comparisons on Kalman-Filter-Based Dynamic State Estimation Algorithms of Power Systems
    Liu, Hui
    Hu, Fei
    Su, Jinshuo
    Wei, Xiaowei
    Qin, Risheng
    [J]. IEEE ACCESS, 2020, 8 : 51035 - 51043
  • [6] Dynamic State Estimation of Power Systems by p-Norm Nonlinear Kalman Filter
    Wang, Wanli
    Tse, Chi K.
    Wang, Shiyuan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (05) : 1715 - 1728
  • [7] Constrained Nonlinear State Estimation Using Ensemble Kalman Filters
    Prakash, J.
    Patwardhan, Sachin C.
    Shah, Sirish L.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (05) : 2242 - 2253
  • [8] PMU Analytics for Decentralized Dynamic State Estimation of Power Systems Using the Extended Kalman Filter with Unknown Inputs
    Ghahremani, Esmaeil
    Kamwa, Innocent
    [J]. 2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [9] Voltage sag state estimation for power distribution systems using Kalman filter
    Janabali, Mahda
    Meshksar, Sina
    Farjah, Ebrahim
    Zolghadri, Mansour
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, PROCEEDINGS, VOLS 1-8, 2007, : 2449 - 2453
  • [10] DYNAMIC STATE ESTIMATION IN POWER SYSTEMS
    MILLER, WL
    LEWIS, JB
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (06) : 841 - +