The optimal rolling of a sphere, with twisting but without slipping

被引:4
|
作者
Beschastnyi, I. Yu. [1 ]
机构
[1] Russian Acad Sci, Inst Program Syst, Pereslavl Zalesskii, Russia
基金
俄罗斯基础研究基金会;
关键词
optimal control; geometric methods; symmetries; rolling of surfaces; GENERALIZED DIDO PROBLEM; SUB-RIEMANNIAN PROBLEM; MAXWELL STRATA; EXTREMAL TRAJECTORIES; PLANE;
D O I
10.1070/SM2014v205n02ABEH004370
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of a sphere rolling on the plane, with twisting but without slipping, is considered. It is required to roll the sphere from one configuration to another in such a way that the minimum of the action is attained. We obtain a complete parametrization of the extremal trajectories and analyse the natural symmetries of the Hamiltonian system of the Pontryagin maximum principle (rotations and reflections) and their fixed points. Based on the estimates obtained for the fixed points we prove upper estimates for the cut time, that is, the moment of time when an extremal trajectory loses optimality. We consider the problem of re-orienting the sphere in more detail; in particular, we find diffeomorphic domains in the pre-image and image of the exponential map which are used to construct the optimal synthesis.
引用
收藏
页码:157 / 191
页数:35
相关论文
共 50 条
  • [31] Optimal forward twisting pike somersault without self-collision
    Charbonneau, Eve
    Bailly, Francois
    Begon, Mickael
    SPORTS BIOMECHANICS, 2023, 22 (02) : 316 - 333
  • [32] Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane
    Sachkov, Yu. L.
    SBORNIK MATHEMATICS, 2010, 201 (07) : 1029 - 1051
  • [33] Slipping in Rolling Bearings. Case Analysis
    Royzman, V.
    Bubulis, A.
    Jonusas, R.
    Juzenas, K.
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE VIBROENGINEERING 2008, 2008, : 87 - 89
  • [34] Rolling and slipping motion of Euler's disk
    Caps, H
    Dorbolo, S
    Ponte, S
    Croisier, H
    Vandewalle, N
    PHYSICAL REVIEW E, 2004, 69 (05): : 6
  • [35] TURNING WITHOUT TWISTING
    不详
    AUTOMOTIVE INDUSTRIES, 1977, 157 (03): : 77 - 77
  • [36] Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane
    Mashtakov, A. P.
    Sachkov, Yu. L.
    SBORNIK MATHEMATICS, 2011, 202 (09) : 1347 - 1371
  • [37] The nonholonomy of the rolling sphere
    Johnson, Brody Dylan
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (06): : 500 - 508
  • [38] Slipping Stokes flow around a slightly deformed sphere
    Senchenko, Sergey
    Keh, Huan J.
    PHYSICS OF FLUIDS, 2006, 18 (08)
  • [39] A block slipping on a sphere with friction: Exact and perturbative solutions
    Prior, Tom
    Mele, E. J.
    AMERICAN JOURNAL OF PHYSICS, 2007, 75 (05) : 423 - 426